

Packaged Terminal Air Conditioners & Heat Pumps

Architects and Engineers Manual

A rugged, yet versatile new Package Terminal Unit that is ideal for zoned heating and cooling applications such as:

- Hotels & Motels
- Nursing Homes & Assisted Living
- Office Complexes
- Apartments & Condos
- Single dwellings
- Residential add-ons
- Dormitories

A higher standard of comfort

Amana Packaged Terminal Air Conditioners

Quality-built Amana High Efficiency Packaged Terminal Units are ideal for motels, hotels, offices, nursing homes, apartments, dormitories or any application that requires individual zone cooling and heating. They provide flexible application, quiet and efficient operation, easy installation, and trouble-free maintenance.

Amana designed the **Packaged Terminal Unit** for complete customer comfort and owner peace of mind. From innovative design to state-of-the-art engineering, the **Amana Standard Advantage** provides the best solutions for all your cooling and heating needs.

Available in a wide range of 230/208 amd 265 volt cooling/electric heat and heat pump models, our units have nominal capacities of **7,200 to 14,200 Btuh** and up to 5.0 kW electric resistance heat to meet most applications. The Amana **Packaged Terminal Unit** is designed to match your application. Its *stylish design* and *slim pro-file* maximize valuable room space making it a preferred choice for both new and retrofit installations. And the cabinet's *neutral color* makes it compatible with virtually any room decor or achitectural design.

With our unit, installation is a breeze. Amana units fit any industry standard-sized wall sleeve to **save time** and **reduce installation costs**. Once installed, maintenance is a snap -- the front panel tilts forward for easy filter access. For more extensive service, the unit slides out of the sleeve easily for full access to all working components.

Amana Packaged Terminal Units are designed for *moneysaving performance*. Electric cooling/ heating units de-

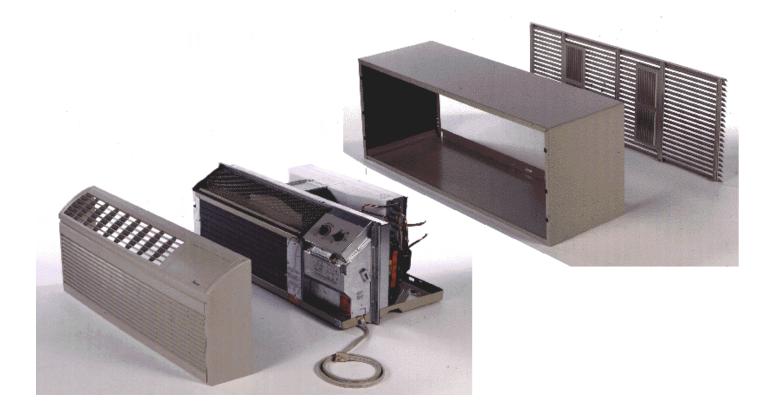
Thanks to our unique **sound control system**, operating sounds are nearly unheard. Sounds are absorbed before they can leave the cabinet for unparalleled peace and quiet your guests will enjoy. They'll also appreciate our unit's **increased dehumidification capabilities**. And so will you since lower humidity often extends the life of room furnishings.

liver Energy Efficiency Ratios (EERs)* up to 11.6 that reduce energy consumption and save money compared to standard efficiency units. Heat Pump models feature Coefficients of Performance (COPs)** of up to 3.3.

*EER: Energy Efficient Ratio, a measure of cooling efficiency. The higher the EER, the more efficient the cooling system.

****COP**: Coefficient of Performance, a measure of heat pump heating efficiency. The higher the COP, the more efficient the heating system.

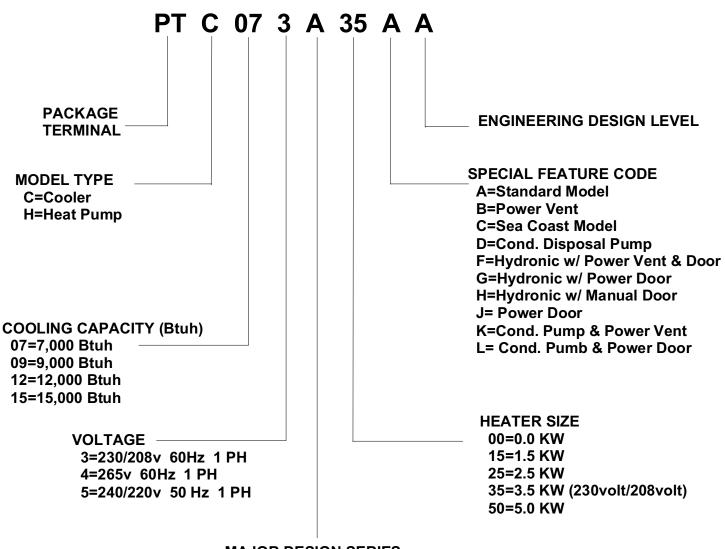
Complete Accessory List	
ntroduction	5
Package Terminal Unit Nomenclature	6
Commitment to Qualtiy	
Quality Features and Benefits	8
Product Specifications and Performance Data	12
Latent System Capacity Information	18
Normal Operating Data	20
The Heat Pump Story	24
Jnit Dimensions	25
Nall Sleeve Installation	26
Factory Installed Options	
Sea Coast Protection	27
Hydronic Heat Chassis	
Power Vent, Power Door	
Condensate Disposal Pump Kit	
Specifications	• ·
Wall Sleeve/Subbase Dimensions	32
Cabinet (Wall Sleeve)	
Main Duct Kit	
Standard Electrical Subbase	
Accessories	• ·
Fuse Holder Kit	35
Power Disconnect Switch	
Circuit Breaker Kit	
Leveling Legs	
Hard Wire Kit	
Security Key Locks Kit	
Remote Temerature Sensor	
Spare Filters	
Remote Escutcheon Kit	
Condenser Baffle Kit	
Outdoor Grilles	
Special Outdoor Grille and Other Architectural Treatment Information	
Viring Diagrams	00
Standard Unit	39
Standard Unit with 2-Stage Heat	
Power Vent	
Power Vent with2-Stage Heat	
Hydronic Unit	
Special Applications	10
Twinning Information	44
Energy Management Systems	
Guide Specifications	
Sample Warranty	
	40


Complete Accessory List

Kit Number	Description	For Additional Information,
ODK2450	Circuit Breaker Kit 230/208V 15A	A-30
CBK315C CBK320C	Circuit Breaker Kit 230/208V 15A	A-30
CBK325C	Circuit Breaker Kit 230/208V 20A	A-30
CBK323C	Circuit Breaker Kit 230/208V 30A	A-30
DK900-1	Condensate Drain Kit	A-30
CDP302	Condensate Removal Pump 230/208V	A-26
CDP402	Condensate Removal Pump 265V	A-26
DGK1	Condenser Baffle Kit	A-32
EDK02	Duct Extension Kit - Extension	A-32 A-28
MDK02	Duct Extension Kit - Main Duct	A-28
TDK02	Duct Extension Kit - Terminal Duct	A-28
FK10A	Filters, Spare	A-20
FHK315C	Fuse Holder Kit 230/208V 15A	A-31
FHK313C	Fuse Holder Kit 230/208V 13A	A-30
FHK330C	Fuse Holder Kit 230/208V 30A	A-30
AGK10*B	Grille, Architectural (Ten Pack)	A-30
AGK01*B	Grille, Architectural (Single Pack)	A-32
SGK01B	Grille, Standard Outdoor (Single Pack)	A-32
SG10B	Grille, Standard Outdoor (Single Pack) Grille, Standard Outdoor (Ten Pack)	A-32
PTPWHWK4	Hard Wire Kit	A-32
HK3**E	Heater Kit 230/208V	A-30
HK4**E	Heater Kit 265V	A-30
HVK03A	Hydronic Heat Kit (Steam)	A-30
HWK03A	Hydronic Heat Kit (Water)	A-25
HTK3	Hydronic Transformer Relay Kit 230/208V	A-23
HTK4	Hydronic Transformer Relay Kit 265V	A-24
LL-2B	Leveling Legs	A-24 A-30
PSHW03A	Power Disconnect Switch 230/208V	A-30
PSHW04A	Power Disconnect Switch 250/200V	A-30
PDK3A	Power Door Kit 230/208V	A-30
PDK4A	Power Door Kit 265V	A-26
PVK3A	Power Vent Kit 230/208V	A-26
PVK3A PVK4A	Power Vent Kit 250/200V	A-26
REK10A	Remote Escutcheon	A-31
RTS01	Remote Temperature Sensor	A-31
KL03	Security Key Lock	A-31
PTSB320C	Subbase Kit 230/208V 15/20A	A-31
PTSB330C	Subbase Kit 230/208V 30A	A-29
PTSB420C	Subbase Kit 265V 15/20A	A-29
PTSB420C PTSB430C	Subbase Kit 265V 30A	A-29
WS900B	Wall Sleeve	A-25
VW2WNCA	Water Valve - 2 way-24V-NC-EndSwitch	A-27
VW2WNCA VS2WNCA	Water Valve - 2 way-24V-NC-EndSwitch	A-25
VW2WNOA	Water Valve - 2 way-24V-NC-Steam Water Valve - 2 way-24V-NO-EndSwitch	A-25
VW2WNOA VS2WNOA	Water Valve - 2 way-24V-NO-EndSwitch	A-25
VW3WNCA	Water Valve - 2 way-24V-NO-Steam Water Valve - 3 way-24V-NC-EndSwitch	A-25
VW3WNOA	Water Valve - 3 way-24V-NO-EndSwitch	A-25
VVVVVVVV	Ivvaler valve - 5 way-24v-140-LIIUSWILLII	A-20

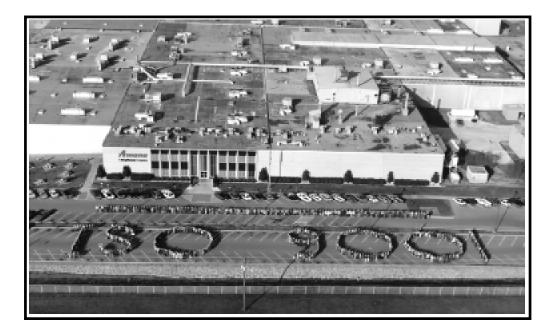
This manual includes complete product, performance, and application information and is designed to assist the architect and engineer in the selection and design of a zonal comfort control system using the **Amana Package Terminal Air Conditioner and Heat Pump**.

The Amana Package Terminal Air Conditioner and Heat Pump is a self-contained unit designed for through-the-wall installation in hotels, motels, offices, apartments, offices, medical facilities, and dormitories to provide complete individual room comfort in cooling and heating modes. Our models are suited for virtually any application with cooling capacities ranging from 7,200 to 14,200 Btuh and electric heating capacities from 6,700 to 17,100. Our heat pump models have reverse cycle heating capacities ranging from 6,700 to 13,400.


All units are rated in accordance with ARI Standard 310 and 380 and certified by UL and CUL.

Amana PTAC Model Nomenclature

Amana's Packaged Terminal Unit's are identified by model number which defines the type of unit, cooling capacity, heater size, electrical information and special features. Use this nomenclature when ordering an Amana unit to ensure you receive the correct unit.


MAJOR DESIGN SERIES

Quality is designed and manufactured into every Amana Packaged Terminal Unit. Buying quality products is a smart purchase decision, and it's the surest way to get the most value for your dollars. Once you know Amana quality features and can point them out, you'll find it easy to convince your customers to "buy smart"... to buy Amana.

Engineered and built in a place that is registered "World Class."

The ISO 9001 registration is an internationally recognized standard of excellence. Amana's Fayetteville Tennessee manufacturing facility, which builds the Amana Packaged Terminal Unit, was the first in the industry to be awarded this certificate of registration for quality assurance programs.

Fayetteville, Tennessee Manufacturing Facility

All Amana customers are assured of total value with the quality features Amana products provide:

- ✓ Long life for more value per purchase dollar
- ✓ Reliability for trouble-free operation
- ✔ Quiet operation for annoyance -free peace of mind
- ✓ Versatile, stylish design throughout product life
- ✓ Easy maintenance for continued efficient operation

Standard Features and Benefits

	Model	Series
Features	PTC Models	PTH Models
Adjustable Indoor Air Louvers	Standard	Standard
Automatic Compressor Restart Delay	Standard	Standard
Central Desk Control Capability	Standard	Standard
Compressor Restart Delay	Standard	Standard
Concealed Manual Vent Control	Standard	Standard
Cooling EER Range (230/208 - 265 Volts)	9.2 - 11.6	9.0 - 11.5
Corrosion Treated	Sea Coast Models	Sea Coast Models
Ducted Installation Capability	Standard	Standard
Easily Removable Up-Front Filter	Standard	Standard
Factory Installed Heater	Standard	Standard
Fan Cycle Switch	Continuous/Auto	Continuous/Auto
Fan Motors - Permanently Lubricated	Standard	Standard
Fan Only Setting	Standard	Standard
Field Installed Heater Kit Option	Available	Available
Heat Pump Defrost System		Passive
Heat Pump Internal Condensate Removal (ICR) Option	Accessory Kit Available	Accessory Kit Available
Heat Source - Electric Resistance Heat	Standard	
Heat Source - Heat Pump With Backup Resistance Heat		Standard
Heating COP Range (230/208 - 265 Volts)		2.8 - 3.3
Increased Dehumidification Capacity	Standard	Standard
Indoor Fan Speed Selections - Hi/Low	Standard	Standard
Microprocessor Controlled	Standard	Standard
Power Connection	Cord Connected	Cord Connected
Random Restart	Standard	Standard
Remote Control Capability With Wall Mounted Thermostat	Standard	Standard
Room Freeze Protection	Standard	Standard
Rotary Compressor	Standard	Standard
Rotary Control Knobs	Standard	Standard
Staged Heating	Standard	Standard
Temperature Limiting	Standard	Standard
Unit Diagnostics	Accessory Kit Available	Accessory Kit Available
Wall Sleeve 13-3/4" x 42" x 16-1/16"	Accessory Kit Available	Accessory Kit Available
Zero Floor Clearance	Standard	Standard

Amana has designed the **Packaged Terminal Air Conditioner** for customer comfort and owner peace of mind. No other unit in the industry offers so many "extras" already built in as **"standard"** on every unit. With all the features and benefits our units have to offer, you no longer need to settle for anything less than the **Amana "Standard" Advantage!!**

- Five-Year Warranty
- Energy Efficiencies
- Freeze Protection
- 7" Unit Front
- Versatile Style
- Easy Filter Access
- Remote Thermostat Control
- Increased Dehumidification
 Capacity
- Quiet Operation
- Easy To Use Controls
- Front Desk Control
- Filtered Ventilation Air
- Remote Temperature Sensing
- Industry Standard Wall Sleeve
- Easy to Service
- Automatic Emergency Heat
- Fan Mode Switch
- Zero Floor Clearance
- Temperature Limiter
- Random Restart
- Compressor Restart Delay

Five-Year Warranty

Enjoy one of the most comprehensive warranties in the industry. Full 1-year warranty on unit parts and labor; full 5-year warranty on the entire sealed system components; limited parts-only warranty on functional components.

Energy Efficiencies

Our units' high efficiencies can qualify you for many of the rebates offered by electrical power companies. EER's up to 11.5 and heat pump COP's up to 3.3 keep energy consumption to a minimum.

Freeze Protection

No more worries about bursting water pipes or broken fixtures caused by freezing temperatures. When the unit senses temperatures of 40 degrees Fahrenheit or below, the unit activates the fan motor, and either the electric resistance heater or the hydronic heater.

7" Unit Front

Enhance valuable room space -- the unit front has a sleek 7" depth, one of the shallowest silhouettes in the industry today. In addition, to inhibit guesttampering, the front can be secured to the chassis with hidden screws.

Versatile Style

Our unit's new stylish design and neutral color make it compatible with virtually any room decor or architectural design. The unit becomes less noticeable as it blends into the room's color scheme.

Increased Dehumidification Capacity

Maintain lower humidity levels in rooms while cooling them without the need for expensive add-on's. As a result, guests feel more comfortable at higher temperatures, thus reducing cooling costs, and the life of your furniture, wall coverings, and fixtures is extended which means less replacement costs.

Quiet Operation

The unit's state of the art design and construction provide a quiet environment allowing guests to enjoy peaceful, sleep-filled nights. Operating sound levels are further dampened when unit is in ""low fan"" mode of operation.

Compressor Restart Delay

Extended compressor-life. The unit automatically delays any restart attempt by three minutes to allow the refrigerant pressures time to equalize.

Front Desk Control

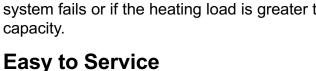
Obtain greater savings by centrally controlling units and eliminate wasted energy generated by cooling and heating unoccupied rooms. Each unit has low voltage interface capability with a field supplied front desk ON/OFF switch.

Filtered Ventilation Air

Guest's rooms stay cleaner, longer. The hidden ventilation air intake filters outside air to reduce dust and pollen.

Remote Temperature Sensing

Guests enjoy ultimate comfort with consistent climate control. Attach an optional, inexpensive remote thermistor temperature sensing device and temperatures are held more closely to the chosen room setting.



Wall Sleeve 13-3/4" x 42" x 16-1/16"

No more worries about changing out non-standard sleeves that do not accommodate the bulk of what the industry has to offer. Amana's wall sleeve is an industry standard size of 13-3/4" deep x 42" wide x 16-1/16" high.

Automatic Emergency Heat

No more "my unit is not heating" complaints during the middle of the night. Each unit automatically switches over to electric resistance heat if for any reason the heat pump compressor system fails or if the heating load is greater than the unit capacity.

The main components are easily serviced; the unit is easy to diagnose or troubleshoot to spot potential problems.

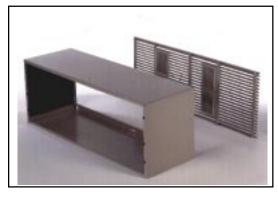
Zero Floor Clearance

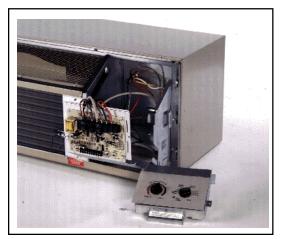
Unit can be installed flush to the finished floor, if desired. (Some accessories do not have zero clearance).

Easy to Use Controls

No complex controls to confuse guests and create problems. Controls are easy to read, understand and activate.

Fan Mode Switch


Take advantage of each unit's dual options: select continuous fan operation or cycle the fan ON and OFF with the compressor.


Random Restart

Avoid troublesome power surges that can damage electrical circuits. Each unit has a random restart circuit to prevent all units from restarting at one time after power disruption.

Temperature Limiter

Save energy and money by avoiding the extreme settings that can occur with guest operation. The unit-mounted mechanical temperature limiter allows guests to adjust in-room temperature settings while maintaining a pre-programmed range set by you.

Specifications: Cooling/Heat Pump Electric Heat

PTH Models

Heat Pump Cooling Performance

Model (Basic) (NOTES 1 & 7)	PTH073A**AA	PTH074A**AA	PTH093A**AA	PTH094A**AA	PTH123A**AA	PTH124A**AA	PTH153A**AA	PTH154A**AA
Voltage (NOTE 3)	230/208	265	230/208	265	230/208	265	230/208	265
Capacity (BTUH)	7,400/7,200	7,400	9,000/8,800	9,000	12,000/11,600	12,000	14,000/13,800	14,000
Amps	2.8/3.0	2.0	3.5/3.8	3.0	4.6/5.0	3.7	7.4/7.9	6.5
Watts	625/610	625	810/790	810	1,145/1,125	1,145	1,490/1,470	1,490
EER	11.5	11.5	11.1	11.1	10.6	10.6	9.4	9.4
Units without Electric Heater Min.Circuit Ampacity (NOTES 2 & 4)	4.0	3.6	5.1	4.4	7.3	5.7	8.4	7.7
CFM (Cool, Wet Coil)								
High	220/215	220	220/215	220	290/270	290	325/315	325
Low	175/155	175	175/155	175	220/190	220	250/220	250
CFM (Dry Coil)								
High	235/230	235	235/230	235	310/290	310	345/335	345
Low	185/165	185	185/165	185	235/205	235	265/235	265
Ventilated Air, CFM (Fan Only)	35*	35*	35*	35*	45*	45*	50*	50*
Dehumidification (Pints/Hr.)	1.9	1.9	2.7	2.7	3.8	3.8	4.4	4.4
Net Weight (approximate lbs.)	110	110	120	120	130	130	140	140
Shipping Weight (approximate lbs.)	130	130	140	140	150	150	160	160

* Approximately 70 CFM with optional power vent kit.

Heating Performance - Reverse Cycle (See facing page for Electric Heater Performance and Power Cord Configuration)

Heating Capaci Reverse Cycle (NO		PTH073A**AA	PTH074A**AA	PTH093A**AA	PTH094A**AA	PTH123A**AA	PTH124A**AA	PTH153A**AA	PTH154A**AA
Amps		2.6/3.0	2.2	3.2/3.6	2.6	4.5/5.1	3.9	5.0/5.6	4.1
Watts		560/540	560	770/760	770	1,020/1,000	1,020	1,350/1,320	1,350
BTUH (NOTE 5)		6300/6100	6300	8,400/8,300	8,400	10,800/10,600	10,800	13,400/13,100	13,400
COP (NOTE 5)		3.3	3.3	3.2	3.2	3.1	3.1	2.9	2.9
CFM (Dry)		235/230	235	235/230	234	310/290	310	345/335	345
Heating BTUH (NOTE 5)	°F								
Outdoor Ambient	62	8300/8100	8300	10,600/10,500	10,600	13,200/13,000	13,200	16,500/16,200	16,500
	57	7700/7500	7700	10,000/9,900	10,000	12,400/12,200	12,400	15,500/15,200	15,500
	52	7000/6800	7000	9,300/9,200	9,300	11,600/11,400	11,600	14,400/14,100	14,400
	47	6300/6100	6300	8,400/8,300	8,400	10,800/10,600	10,800	13,400/13,100	13,400
Rating Point (NOTE 5)	(COP)	3.3/3.3	3.3	3.2/3.2	3.2	3.1/3.1	3.1	2.9/2.9	2.9
	42	5600/6400	5600	7,600/7,500	7,600	10,000/9,800	10,000	12,300/12,100	12,300
	37	5000/4800	5000	6,800/6,700	6,800	9,200/9,000	9,200	11,400/11,200	11,400
	32	4400/4200	4400	6,000/5,900	6,000	8,400/8,200	8,400	10,300/10,100	10,300
Watts	62	645/625	645	860/840	860	1,120/1,100	1,120	1,500/1,470	1,500
Outdoor Ambient	57	620/625	620	830/810	830	1,090/1,070	1,090	1,450/1,420	1,450
	52	585/565	585	800/785	800	1,050/1030	1,050	1,400/1,380	1,400
	47	560/540	560	770/760	770	1,020/1,000	1,020	1,350/1,320	1,350
	42	535/525	535	740/730	740	990/970	990	1,290/1,265	1,290
	37	510/500	510	710/700	710	950/930	950	1,225/1,200	1,225
	32	485/475	485	680/670	680	920/900	920	1,170/1,140	1,170

NOTES:

1. All 265v models must use Amana's subbase (PTSB4**C) or Amana's hard wire kit (PTPWHWK4)

2. Minimum branch circuit ampacity ratings conform to the National Electric Code. However, local codes should apply.

3. Minimum voltage on 230/208 volt models is 197 volts; maximum is 253 volts. Minimum voltage on 265 volt models is 238.5 volts; maximum is 291.5 volts.

4. Overcurrent protection for **all units without electric heaters** is 15 amps. Overcurrent protection on 265 volt models must be cartridge-style time delay fuses (included and factory installed on Amana chassis).

5. Heating capacity and efficiency is based on unit operation without condensate pump. Unit automatically switches to electric heat at 25°F outdoor coil temperature.

6. Total watts for 15,000 Btuh models; subtract 30 watts for PT12*A**AA, PT07/09*A50AA and 70 watts for

PT07/09*A15-35AA.

7. Please specify 2-digit heater kW size to complete model number.

8. Total amps for 12,000 and 15,000 Btuh models AND PT07/09*A50AA; subtract 0.2 amps for PT07/09*A15-35AA

EER - Energy Efficiency Ratio per American Refrigeration Institute (ARI) Test Procedures

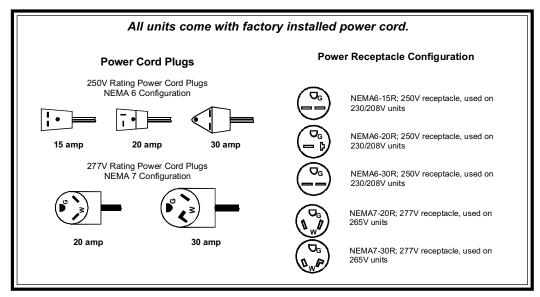
COP - Coefficiency of Performance per ARI Test Procedures

Specifications: Cooling/Electric Heat

PTC Models

Cooling Performance

Model (Basic) (NOTES 1 & 7)	PTC073A**AA	PTC074A**AA	PTC093A**AA	PTC094A**AA	PTC123A**AA	PTC124A**AA	PTC153A**AA	PTC154A**AA
Voltage (NOTE 3)	230/208	265	230/208	265	230/208	265	230/208	265
Capacity (BTUH)	7,500/7,400	7,500	9,000/8,800	9,000	12,200/12,000	12,200	14,200/14,000	14,200
Amps	2.8/3.0	2.0	3.5/3.8	3.0	4.6/5.0	3.7	7.4/7.9	6.5
Watts	625/610	625	810/790	810	1130/1110	1,145	1,510/1,490	1,510
EER	11.6	11.6	11.1	11.1	10.8	10.8	9.4	9.4
Unit without Electric Heater Min.Circuit Ampacity (NOTES 2 & 4)	4.0	3.6	5.1	4.4	7.3	5.7	8.4	7.7
CFM (Cool, Wet Coil)								
High	220/215	220	220/215	220	290/270	290	325/315	325
Low	175/155	175	175/155	175	220/190	220	250/220	250
CFM (Dry Coil)								
High	235/230	235	235/230	235	310/290	310	345/335	345
Low	185/165	185	185/165	185	235/205	235	265/235	265
Ventilated Air, CFM (Fan Only)	35*	35*	35*	35*	45*	45*	50*	50*
Dehumidification (Pints/Hr.)	1.9	1.9	2.7	2.7	3.8	3.8	4.4	4.4
Net Weight (approximate Lbs.)	110	110	120	120	130	130	140	140
Shipping Weight (approximate lbs.)	130	130	140	140	150	150	160	160


* 70 CFM with optional power vent kit

Electric Heater Performance (PTC and PTH Models)

(Primary for PTC models; Auxiliary for PTH models)

	ELECTRIC		Ν	NOMINAL HEATING		TOTAL	TOTAL	MIN. CIRCUIT	OVERCURRENT	
VOLTAGE	HEATER SIZE (kW)	NO. OF STAGES	BTUH AT 230V	BTUH AT 208V	BTUH AT 265V	WATTS (NOTE 6)	AMPS (NOTE 8)	AMPACITY (NOTE 2)	PROTECTION (NOTE 4)	POWER CORD
230/208V	2.5/2.0	1	8,500	6,800		2,650/2,140	11.5/10.2	14.2	15	6 - 15 P
230/208V	3.5/2.9	1	12,000	9,900		3,650/3,040	15.8/14.5	19.6	20	6 - 20 P
230/208V	5.0/4.1	**	17,100	14,000		5,150/4,240	22.3/20.3	27.7	30	6 - 30 P
265V	2.5	1			8,500	2,650	10.0	12.4	15	7 - 20 P
265V	3.7	1			12,600	3,850	14.6	18.1	20	7 - 20 P
265V	5.0	**			17,100	5,150	19.5	24.2	25	7 - 30 P

PTC/H07*AAA and PTC/H09*A**AA are 2-stage; PTC/H12*A**AA and PTC/H15*A**AA are 1-stage.

Specifications: Cooling/Electric Heat

Air Conditioner

PTC Models - Performance Data

	Wet Bulb	Dry Bulb	alb 208 Volt											
	Temp. Ent	Temp. Ent					Outo	loor Ten	nperature	∌ (°F)				
Nominal	Indoor	Indoor		85			95 105					5 115		
Unit	Coil	Coil	Total	Sen	%	Total	Sen	%	Total	Sen	%	Total	Sen	%
Size	(°F)	(°F)	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH
		75	7065	6025	85	6745	5865	87	6375	5990	94	6035	5850	97
	61	80	7325	7325	100	7045	7045	100	6630	6630	100	6320	6320	100
		85	7615	7615	100	7435	7435	100	7130	7130	100	6680	6680	100
		75	7865	4235	54	7565	4380	58	7060	4385	62	6650	4230	64
07	67	80	7765	5695	73	7400	5555	75	7040	5600	80	6630	5475	83
		85	7810	6950	89	7510	6815	91	7075	6625	94	6690	6690	100
		75	8810	3000	34	8335	2960	36	7910	2820	36	7475	2665	36
	73	80	8715	4210	48	8320	4070	49	7840	4070	52	7410	3925	53
		85	8615	5590	65	8190	5280	64	7765	5120	66	7335	4980	68
		75	8290	6210	75	7850	5995	76	7375	5765	78	6880	5535	80
	61	80	8240	7310	89	7815	7085	91	7355	6855	93	6970	6970	100
		85	8385	8385	100	8040	8040	100	7675	7675	100	7260	7260	100
		75	9405	4950	53	8975	4755	53	8370	4555	54	7810	4460	57
09	67	80	9305	6170	66	8800	5755	65	8260	5545	67	7705	5270	68
		85	9155	7210	79	8725	7085	81	8120	6815	84	7595	6400	84
	73	75	10590	3660	35	10025	3450	34	9445	3240	34	8835	3025	34
		80	10465	4735	45	9910	4530	46	9310	4315	46	8695	4095	47
		85	10330	5805	56	9770	5600	57	9165	5385	59	8545	5170	61
		75	11350	8765	77	10690	8450	79	9940	8105	82	9050	7705	85
	61	80	11310	10280	91	10650	9955	93	9880	9585	97	9165	9165	100
		85	11600	11600	100	11050	11050	100	10375	10375	100	9665	9665	100
		75	12885	6930	54	12310	6685	54	11410	6310	55	10515	5950	57
12	67	80	12745	8370	66	12000	8060	67	11200	7735	69	10275	7395	72
		85	12530	9880	79	11900	9620	81	10990	9275	84	10050	8920	89
		75	14575	5045	35	13770	4745	34	12955	4445	34	12025	4115	34
	73	80	14400	6535	45	13585	6235	46	12755	5935	47	11725	5570	48
		85	14205	8020	56	13410	7730	58	12480	7425	59	11440	7035	61
		75	13245	10205	77	12490	9830	79	11570	9405	81	10610	8940	84
	61	80		11930		12345	11515			11045		1	10760	
		85	13465	13465	100	12775	12775	100	11965	11965	100	11325	11325	100
		75	15035	8120	54	14365	7835	55	13280	7345	55	12200	6875	56
15	67	80	14845	9745	66	14000	9375	67	13020	8975		11990		72
		85	14575	11455			11125			10680			10370	
		75	16875	5915	35	16120	5625	35	15130	5260	35	14010	4790	34
	73	80	16780			15870			14835			13635		47
		85	16535				8970		14530			13385		

Specifications: Cooling/Electric Heat

PTC Models - Performance Data

Air Conditioner

	Wet Bulb	Dry Bulb	230/265 Volt											
	Temp. Ent	Temp. Ent					Outo	loor Tem	perature	e (°F)				
Nominal	Indoor	Indoor		85			95			105			115	
Unit	Coil	Coil	Total	Sen	%	Total	Sen	%	Total	Sen	%	Total	Sen	%
Size	(°F)	(°F)	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH
		75	7165	6125	85		5965	87	6475		94	6135		97
	61	80	7425	7425	100	7145	7145	100	6730	6730	100	6420		100
		85	7715	7715	100	7535	7535	100	7230	7230	100	6780		100
		75	7965	4335	54	7665	4480	58	7160		63			64
07	67	80	7865	5795	74	7500	5655	75	7140		80	6730		83
		85	7910	7050	89		6915	91	7175		94	6790		100
		75	8910	3100	35		3060	36	8010		36	7575		37
	73	80	8815	4310	49	8420	4170	50	7940		53	7510		54
		85	8715		65		5380	65	7865		66	7435		68
		75	8490	6410	76		6195	77	7575		79	7080		81
	61	80	8440	7510	89		7285	91	7555	7055	93			100
		85	8585	8585	100	8240	8240	100	7875	7875	100	7460		100
		75	9605	5150	54	9175	4955	54	8570		55			58
09	67	80	9505	6370	67	9000	5955	66	8460		68	7905		69
		85	9355	7410	79		7285	82	8320	7015	84	7795		85
		75	10790	3860		10225	3650	36	9645		36	9035		36
	73	80	10665	4935		10110	4730	47	9510		47	8895		48
		85	10530	6005	57	9970	5800	58	9365	5585	60	8745		61
		75	11550	8965		10890	8650	79			82	9250		85
	61	80		10480		10850			10080		97	9365		100
		85		11800		11250			10575		100	9865		100
		75	13085	7130		12510	6885		11610		56			57
12	67	80	12945			12200	8260		11400	7935		10475		73
		85		10080		12100	9820		11190			10250		89
		75	14775	5245		13970	4945		13155	4645	35		4315	35
	73	80	14600	6735		13785	6435		12955	6135	47			48
		85	14405	8220		13610	7930		12680	7625		11640		62
		75		10405			10030			9605			9140	
	61	80		12130			11715			11245			10960	100
		85		13665			12975			12165			11525	100
		75		8320			8035			7545			7075	57
15	67	80		9945			9575			9175		1	8775	72
		85		11655		13985				10880			10570	
		75	17075			16320	5825		15330			14210		35
	73	80	16980			16070			15035			13835		48
		85	16735	9530	57	15795	9170	58	14730	8810	60	13585	8425	62

Specifications: Cooling/Heat Pump Electric Heat

Heat Pump

PTH Models - Performance Data

	Wet Bulb	Dry Bulb	208 Volt											
	Temp. Ent	Temp. Ent					Outd	loor Terr	perature	e (°F)				
Nominal	Indoor	Indoor		85			95			105			115	
Unit	Coil	Coil	Total	Sen	%	Total	Sen	%	Total	Sen	%	Total	Sen	%
Size	(°F)	(°F)	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH
		75	6870	5840	85	6555	5685	87	6185	5810	94	5855	5670	97
	61	80	7125	7125	100	6850	6850	100	6440	6440	100	6135		100
		85	7415	7415	100	7230	7230	100	6930	6930	100	6490	6490	100
		75	7660	4080	53	7360	4220	57	6865	4225	62	6460	4075	63
07	67	80	7560	5520	73	7200	5375	75	6845	5425	79	6440	5300	82
		85	7605	6755	89	7310	6625	91	6880	6435	94	6500	6500	100
		75	8590	2860	33	8120	2820	35	7705	2680	35	7275	2530	35
	73	80	8500	4055	48	8110	3915	48	7630	3910	51	7210	3775	52
		85	8400	5415	64	7980	5110	64	7560	4955	66	7135	4810	67
		75	8290	6120	74	7840	5900	75	7350	5660	77	6855	5420	79
	61	80	8225	7175	87	7785	6945	89	7315	6705	92	6810	6790	100
		85	8285	8285	100	7920	7920	100	7525	7525	100	7105	7105	100
		75	9420	4905	52	8960	4775	53	8360	4500	54	7785	4400	57
09	67	80	9305	5890	63	8800	5660	64	8250	5485	66	7675	5170	67
		85	9145	7085	77	8710	6945	80	8095	6670	82	7520	6400	85
		75	10610	3675	35	10050	3465	34	9450	3245	34	8835	3020	34
	73	80	10480	4705	45	9920	4495	45	9315	4275	46	8690	4050	47
		85	10345	5730	55	9775	5520	56	9165	5300	58	8535	5075	59
		75	10965	8415	77	10310	8110	79	9575	7770	81	8700	7375	85
	61	80	10920	9910	91	10275	9590	93	9515	9225	97	8810	8810	100
		85	11205	11205	100	10665	10665	100	10000	10000	100	9305	9305	100
		75	12470	6610	53	11905	6370	54	11020	6005	54	10140	5650	56
12	67	80	12330	8030	65	11600	7725	67	10815	7405	68	9900	7070	71
		85	12125	9515	78	11505	9260	80	10605	8915	84	9680	8575	89
		75	14135	4760	34	13345	4465	33	12540	4170	33	11625	3845	33
	73	80	13960	6220	45	13160	5930	45	12340	5630	46	11330	5275	47
		85	13770	7685	56	12990	7400	57	12070	7100	59	11050	6720	61
		75	13055	10055	77	12310	9690	79	11405	9270	81	10460	8815	84
	61	80		11755			11350			10885			10605	100
		85		13275			12590			11795			11165	100
		75	14820	8000	54	14160	7720	55	13090	7240			6775	56
15	67	80	14635			13800			12830			11820		71
		85		11290		13585				10530		11620		88
		75	16635			15890	5540		14915			13810		34
	73	80	16540			15645			14625			13440		47
		85	16300			15370			14320				8105	61
		00	10000	0100	00	10010	0040	00	11020	0,00	00	10100	0100	01

Specifications: Cooling/Heat Pump Electric Heat

PTH Models - Performance Data

	Wet Bulb	Dry Bulb	230/265 Volt											
	Temp. Ent	Temp. Ent					Outc	loor Terr	perature	∋ (°F)				
Nominal	Indoor	Indoor		85			95			115				
Unit	Coil	Coil	Total	Sen	%	Total	Sen	%	Total	Sen	%	Total	Sen	%
Size	(°F)	(°F)	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH	Btuh	Btuh	SH
		75	7070	6040	85	6755	5885	87	6385	6010	94	6055	5870	97
	61	80	7325	7325	100	7050	7050	100	6640	6640	100	6335	6335	100
		85	7615	7615	100	7430	7430	100	7130	7130	100	6690	6690	100
		75	7860	4280	54	7560	4420	58	7065	4425	63	6660	4275	64
07	67	80	7760	5720	74	7400	5575	75	7045	5625	80	6640	5500	83
		85	7805	6955	89	7510	6825	91	7080	6635	94	6700	6700	100
		75	8790	3060	35	8320	3020	36	7905	2880	36	7475	2730	37
	73	80	8700	4255	49	8310	4115	50	7830	4110	52	7410	3975	54
		85	8600	5615	65	8180	5310	65	7760	5155	66	7335	5010	68
		75	8490	6320	74	8040	6100	76	7550	5860	78	7055	5620	80
	61	80	8425	7375	88	7985	7145	89	7515	6905	92	7010	6990	100
		85	8485	8485	100	8120	8120	100	7725	7725	100	7305	7305	100
		75	9620	5105	53	9160	4975	54	8560	4700	55	7985	4600	58
09	67	80	9505	6090	64	9000	5860	65	8450	5685	67	7875	5370	68
		85	9345	7285	78	8910	7145	80	8295	6870	83	7720	6600	85
	73	75	10810	3875	36	10250	3665	36	9650	3445	36	9035	3220	36
		80	10680	4905	46	10120	4695	46	9515	4475	47	8890	4250	48
		85	10545	5930	56	9975	5720	57	9365	5500	59	8735	5275	60
		75	11365	8815	78	10710	8510	79	9975	8170	82	9100	7775	85
	61	80	11320	10310	91	10675	9990	94	9915	9625	97	9210	9210	100
		85	11605	11605	100	11065	11065	100	10400	10400	100	9705	9705	100
		75	12870	7010	54	12305	6770	55	11420	6405	56	10540	6050	57
12	67	80	12730	8430	66	12000	8125	68	11215	7805	70	10300	7470	73
		85	12525	9915	79	11905	9660	81	11005	9315	85	10080	8975	89
		75	14535	5160	36	13745	4865	35	12940	4570	35	12025	4245	35
	73	80	14360	6620	46	13560	6330	47	12740	6030	47	11730	5675	48
		85	14170	8085		13390	7800	58	12470	7500	60	11450	7120	62
		75	13255	10255	77	12510	9890	79	11605	9470	82	10660	9015	85
	61	80	13155	11955	91	12370	11550	93	11430	11085	97	10805	10805	100
		85	13475	13475	100	12790	12790	100	11995	11995	100	11365	11365	100
		75	15020	8200	55	14360	7920	55	13290	7440	56	12225	6975	57
15	67	80	14835	9805	66	14000	9440	67	13030	9045	69	12020	8650	72
		85	14570	11490	79	13785	11170	81	12685	10730	85	11820	10420	88
		75	16835	6025	36	16090	5740	36	15115	5385	36	14010	4920	35
	73	80	16740	7745	46	15845	7410	47	14825	7005	47	13640	6555	48
		85	16500	9395	57	15570	9045	58	14520	8690	60	13395	8305	62

Latent System Capacity

For complete comfort in indoor climate-controlled areas, two important factors must be considered: temperature and humidity. Controlling one without the other, lessens the comfort factor considerably. Working with these factors lends itself to a discussion of the total capacity of an air conditioner. An air conditioner's total capacity is comprised of two parts: the **Sensible Capacity**, the energy of the unit being used to remove heat from the air in the indoor area; and the **Latent Capacity**, the energy of the unit being used to dehumidify the air in the indoor area. For applications in climates where humidity is high, the sensible/latent capacities should be considered. On pages 14-17 specifications in varying conditions are given for sensible capacity under the heading (%SH). Considering total capacity of the unit to be 100 percent, the latent capacity is 1.00 minus sensible capacity, or **LATENT = 1.00 - (%SH)**.

Example:Data taken from:
PTC Model Unit Size 9 (page 14)Nominal
Unit
Size95° F - Outdoor Temperature
80°F - Indoor Dry Bulb Temperature
67° - Indoor Wet Bulb Temperature
%SH = 65
(That is, 65% Sensible Capacity)Nominal
Unit
Size

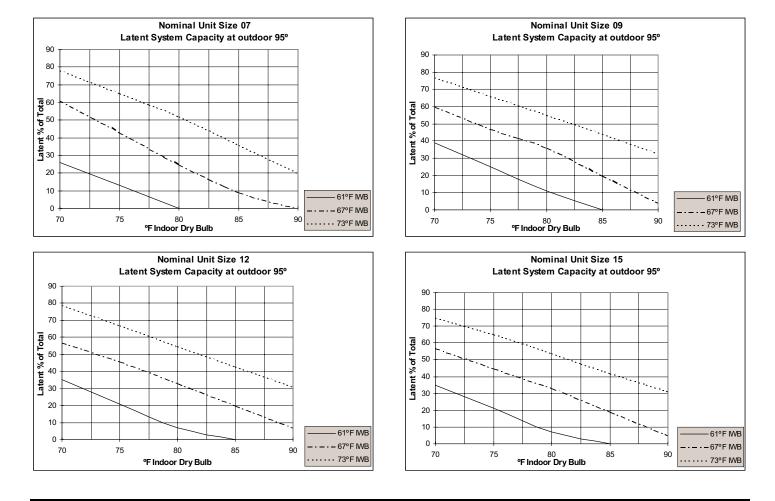
Latent Capacity = 1.00 - SENSIBLE CAPACITY

OR,

Latent Capacity = 1.00-.65 Latent Capacity = .35 OR 35% LATENT CAPACITY

	Wet Bulb Temp. Ent	Dry Bulb Temp. Ent					Outd	loor Tem	perat
Nominal	Indoor	Indoor		85			95		
Unit	Coil	Coil	Total	Sen	%	Total	Sen	%	Tota
Size	(°F)	(°F)	Btuh	Btuh	SH	Btuh	Btuh	SH	Btu
		75	7065	6025	85	6745	5865	87	63
	61	80	7325	7325	100	7045	7045	100	66
		85	7615	7615	100	7435	7435	100	71:
		75	7865	4235	54	7565	4380	58	70
07	67	80	7765	5695	73	7400	5555	75	704
		85	7810	6950	89	7510	6815	91	70
		75	8810	3000	34	8335	2960	36	79 [.]
	73	80	8715	4210	48	8320	4070	49	784
		85	8615	5590	65	8190	5280	64	77
		75	8290	6210	75	7850	5995	76	73
	61	80	8240	7310	89	7815	7085	91	73
		85	8385	8385	100	8040	8040	100	76
		75	9405	4950	53	8975	.1755		83
09	67	80	9305	6170	66	8800	5755	65	820
		85	9155	7210	79	8725	0.95	2	81:
		75	10590	3660	35	10025	3450	34	944
	73	80	10465	4735	45	9910	4530	46	93 [.]
		85	10330	5805	56	9770	5600	57	91(

This means that 65% of the unit's capacity is used to remove heat from the air in the indoor area. The remaining 35% is used to dehumidify the air in that area.


Each of the four charts listed to the right, represent a different unit size. They are 7, 9, 12 and 15, respectively. All demonstrate varying latent capacity of the units at a standard 95° F outdoor temperature. Differing indoor dry bulb temperatures are listed across the bottom of each chart. The latent percent of total capacity is listed to the left. To read the chart, simply determine the dry bulb temperature being considered, then draw a vertical line toward the top of the chart. The converging point of the vertical line and the diagonal line representing the wet bulb temperature of the area (61°, 67° or 73°) demonstrate the latent percentage of total capacity as read to the left of the chart.

What it means . . .

For those in moderate to high humidity areas, determining the proper Latent System Capacity for a particular application can mean more than room comfort at any given time. It can also mean extensive savings on furnishings. When an improper determination of the latent system capacity is made, the humidity level of the room can soar, thereby causing a number of problems for the property owner. In addition to the "dirty-socks" smell of a dank and damp room there are the passive, however labor-intensive and, therefore, costly problems of additional accumulated mold and mildew in bathroom and kitchen areas.

Worse, still, is the expensive and time-consuming moisture damage that can occur to curtains, carpets, furniture and wood work. Both mold and mildew thrive in a damp environment, weakening fabrics and ruining wood products. The replacement/restoration rate for furnishings in areas such as these may be higher than the norm, thereby affecting profit margins.

Over time, however, the problem can worsen to the point of affecting the area structurally. The major time and expense factors in such a scenario can be quite costly.

Latent System Capacity

STATE AND CITY		DESIGN DRY BULB	DAILY TEMP. RANGE	SUMMER DESIGN WET BULB		OUTSIDE	SUMMER DESIGN DRY BULB	DAILY TEMP. RANGE	SUMMER DESIGN WET BULB
	% AR.H .	•F.	•F.	•F.	STATE AND CITY	% R.H.	•F.	۴ ,	۴.
ALABAMA Birmingham	49	94	20	78	NEW HAMPSHIRE Concord	55	-	з	73
Mobile Montgomery	55 48	93 95	20 20	79 79	NEW JERSEY Trenton	53	90	3	π
ARIZOÑA Flagstaff	28	¥2	30	60	Newark NEW MEXICO	Sĩ	91	3	76
Phoenix Tucson	22 21	106	30 25 30	76 73	Albuquerque Roswell, Walker AFB	18 22	94	ਸ ਸ	65
Winslow Yuma	17	95 109	30 25	65 78	NEW YORK Albany	 50	99		70
ARKANSAS Fort Smith	 47	99	2	78	Buffalo	53	XX 26	20 20	74 73
Little Rock CALIFORNIA	43	96	20	79	Elmira New York, La Guardia AP	56 47	90 90	20 15	73 76
Bakersfield Freseo	19 20	101	30 35	71	Rochester Syracuse	53 57	88 87	20 20	74 74
Los Angeles, CO Onkland	41	99 90	29 29 29	72 70	NORTH CAROLINA Charlotte	52	94	20	77
Sucramento	47 24	81 97	35	63 70	Greensboro Raleigh/Durham	54 49	91 92	20	76 78
Sun Diego Sun Francisco, CO	53 34	N3 77	15 20	70 62	Wilmington NORTH DAKOTA	66	91	15	21
COLORADO Denver	18	90	30	64	Bismarck Fargo	38 37	91 HR	30 25	72 74
Grand Junction Pueblo	15 24	94 94	30 30	63 67	Grand Forks OHIO	41	87	ਸ਼	'n
CONNECTICUT Hartford, Brainard Field	62	XX	20	76	Akron/Canton Cincinnati, CO	57 4 6	87 92	20 29	73
New Haven D.C. WASHINGTON, NATIONA	73	86 92	20 15	76 77	Cleveland Columbus	43 52	89	39	77 75
FLORIDA Jacksonville	50	94	20	79	Dayton	48	X# 90	20 20	76 75
Miami Tampa	63 53	90 91	15	79	Youngstown OKLAHOMA	60	26	29	74
GEORGIA	47			NO	Ardmore Oklahoma City	43 35	101 97	20 29	78 · 77 ·
Macon	50	92 96	20 20	77 79	Tulsa OREGON	37	99	20	78
Savannah, Travis AP IDAHO	55	94	20	NO	Baker Eugene	27 38	92 88	30 30	65 67
Boise Idaho Falls	20 28	93 NK	30 40	66 64	Medford Portland	28 33	94 XX	35 20	68 68
ILLINOIS Chicago, Midway	43	92	20	76	PENNSYLVANIA	66	NS	20	74
Moliae Peoria	46 48	91 92	สกุสุ	11 71	Harrisburg Philadelphia	50 56	N9 90	20	75
Springfield INDIANA	47	92	39	78	Pittsburg RHODE ISLAND	46	90 K7	20	77 74
Evansville Indianapolis	44 57	94 91	20 20	7 X 77	Providence	47	86	15	75
IOWA Cedar Ranida	-18	90			SOUTH CAROLINA Charleston, AFB	57	92	15	
Des Moines Ottumwa	49 48	92 93	79	76 77	Columbia SOUTH DAKOTA	57	96	20	79
Sioux City Marshalitown	44	93	កក្ក	78 77	Huron Rapid City	33 28	93 94	30 25	75 71
KANSAS	48	91		77	TENNESSEE Chattanooga	48	94	20	78
Topeka Wichita	40 33	96 99	2 29	7X 76	Knoxville Memphis	43 44	92 96	29 29	76 79
KENTUCKY Louisville	55	93	20	78	TEXAS Abilene	34	99		75
LOUISIANA Lake Charles	51	93	15	79	Amerilo Austin	29 40	96 98	29 25 29 15	71 72
New Orleans Shreveport	57 -1#	91 96	15 29	X0 X0	Brownsville Dalles	54 38	92 99	15	10 71
MAINE Bangor, Dow AFB	55	X5	39	73	El Paso Ft. Worth	22	94K 100	ล ม ุ	69
MARYLAND Baltimore, CO	586	92	39	78	Houston Laredo, AFB	47- 40	94 101	15	71 10 71
MASSACHUSETTS Boxton	53	XX ·	15	74	San Antonio UTAH	37	97	29 29	'n
MICHIGAN	ш.	XX		75 ·	Ogden, CO	25	92	30	65
Soult Ste. Marie MINNESOTA	57	×ī	39 25	71	Salt Lake City VERMONT	18	94	30	66
Minnespolis Rochester	52 45	219 XX	20	75 ·	Burlington VIRGINIA	50	85	3	73
MISSISSIPPI			20	75	Richmond Norfolk	57 49	93 91	20 15	7# 7#
Biloxi, Keesler AFB Jackson	63 .50	92 96	15 39	¥1 78	Romoke WASHINGTON	53	91	39	75
MISSOURI Kansas City	37	97	30	77	Seattle, CO Seokane	42 20	76 90	39 25	65 64
St. Louis, CO Springfield	40 37	44 94	15 20	אל 77	WEST VIRGINIA Charleston	45	90	29	75
MONTANA Billings	28	91	.10	66	WISCON SIN Green Bay	42	85	20	73
Butte Great Falls	21 20	83 88	30 30	59 63	La Crosse Madison	46 58	XX XX	20	76 75
NEBRASKA Lincola. CO	37	96	25	77	Milwaukee WYOMING	54	87	20	75
North Platte Omaha	29	94 94	1718	73 78	Cheyenne	22 13	86	25	e
	16	106	.30	7k 7l	Rock Springs		X4	25	57
Reno	13	92	.w 30	62	All dry buib temperatures taken a CO = urban area AFB = Air F		N UTRETWISE N	XCU.	

TABLE 1 — SUMMER WEATHER CONDITIONS

New Data to be inserted.

TABLE 2 — WINTER WEATHER CONDITIONS

.

STATE AND CITY(a)	MEDIUM OF ANNUAL EXTREMES	97 12°7	COINCIDENT WIND VELOCITY*	STATE AND CITY(a)	MEDIUM OF ANNUAL EXTREMES	97454	COINCIDENT WIND VELOCITY*
ALABAMA				NEW HAMPSHIRE			
Birmingham AP Mobile AP	14 21	128	L M	Concord AP NEW JERSEY	-17	- 7	M
Montgomery AP	18	36	ĩ	Trenton CO	7	16	M
ARIZONA Pingstaff AP	- 10	5	VL.	Newark AP NEW MEXICO	6	15	M
Phoenix AP	25	34	٧L	Albuquerque AP	6	17	L
Tucson AP Winslow AP	23	32 13	VL VL	Roswell Walker AFB NEW YORK	5	19	L
Yuma AP	32		ÝĽ.	Albany AP	- 14	0	L
ARKANSAS Fort Smith AP	9	19	м	Buffalo AP Elmira AP	- 3 - 5	65	M L
Little Rock AP	13	23	M	New York LaGuardia AP	7	16	H
CALIFORNIA Bakersfield AP	26	33	VL	Rochester AP Svracuse AP	- 5	5 2	M
Frese AP	25	31	VL VL	NORTH CAROLINA			
Los Angeles CO Onkinne AP	26 25 38 30	44 37	VL.	Charlotte AP Greensboro AP	13	22 17	L L
Secremento AP Sen Diego AP	24 38	32 44	VL VL	Raleigh/Durham AP Wilmington AP	13	20 27	L
San Francisco CO	34 34		ŶĹ	NORTH ĎAKOTA	19	27	L
COLORADO Denver AP	- 9	3	L	Bismarck AP Fargo AP	-31 -28	- 19 - 17	VL L
Grand Junction AP	- 2	- ni	ŶĹ.	Grand Forks AP	-30	23	ĩ
Pueblo AP CONNECTICUT	-14	- 1	L	OHIO Akron/Canton AP	- 5	6	м
Hartford, Brainard Field	- 4	5	M	Cincinneli CO	2	12	ĩ
New Haven AP D.C., WASHINGTON NATIONAL AP	0 12	9	H	Cleveland AP Columbus AP		7	M M
FLORIDA				Dayton AP	- 1	6	M
Jacksonville AP Miami AP	26 39	32	L M	Youngstown AP OKLAHOMA	- 5	6	M
Тапре	32	39	M	Ardmore	9	19	н
GEORGIA Atlanta AP	14	23	н	Oklahoma City AP Tulsa AP	4	15	H
Macos AP Savannah, Travis AP	18	17 17	L L	OREGON	- 10	1	VL.
IDAHO	+		-	Baker AP Eugene AP	-10		ŶĹ
Boise AP Idaho Falls AP	- 17	10 - 6	vi.	Medford AP Portland CO	15 21	26 23 29	VL L
ILLINOIS		_		PENNSYLVANIA			
Chicago, Midway AP Moline AP	- 7	- 3	M	Erie AP Harrisburg AP		11	M
Peoria AP	- #	2	M	Philadelphie AP	7	15	Ň
Springfield AP INDIANA	- 7	4	M	Pittsburgh AP RHODE ISLAND	- 1	9	м
Evansville AP	1	10	M	Providence AP	0	10	M
Indianapolis AP IOWA	- 5	4		SOUTH CAROLINA Charleston AFB	19	27	L
Cedar Rapids AP Des Moines AP	-14 -13	- 4	M	Columbia AP SOUTH DAKOTA	16	23	Ĺ
Ottumwa AP	-12	- ż	M M	Huron AP -	-24	-12	L
Sigux City AP Marshalltown	-17	- 6	M	Rapid City AP TENNESSEE	-17	- 6	M
KANSAS		-		Chattanooga AP	Ц	19	L
Topeka AP Wichita AP	- 4	6 9	M	Knoxville AP Memphis AP	9 11	17 21	L L
KENTUCKY				TEXAS		-	
Louisville AP LOUISIANA	1	12	L	Abilene AP Amarillo AP	12	21 12	M
Lake Charles AP New Orleans AP	25 29	33 35	M	Austin AP Brownsville AP	19 32	29 40	M
Shreveport AP	18	26	M	Dallas AP	14	24	. .
MAINE Bangor, Dow AFB	- 14	- 4	м	El Paso AP Ft. Worth AP	16 14	25 24	L H
MARYLAND		-		Houston CO	24	33	M
Bakimore. CO MASSACHUSETTS	12	20	M	Laredo AFB San Antonio AP	29 22	36 30	Ĺ
Boston AP	- 1	10	н	UTAH			
MICHIGAN Detroit Metcap	0	*	м	Ogden, CO Salt Lake City AP	- 3 - 2	11 9	VL L
Sault Ste. Marie AP MINNESOTA	- 18	- 8	L	VERMONT Burlington AP	- 18	- 7	M
Minneapolis AP	- 19	- 10	L	VIRGINIA			
Rochester AP MISSISSIPPI	-23	-13	M	Richmond AP Norfolk AP	10 1 R	18 23	L M
Bilouxi Keesler AFB	26 17	32	Ņ	Rossoke AP	9	18	ĩ
Jackson AP MISSOURI	17	24	L	WASHINGTON Seattle CO	14	32	L
Kanses City AP St. Louis CO	- 2	# L1	M	Spokane AP WEST VIRGINIA	- 5	4.	VĪ,
Springlield AP	0	10	M	Charleston AP	I I	14	L
MONTĀNA Billings AP	- 19	- 6	T.	WISCONSIN Green Bay AP	- 16	- 7	M
Butte AP	-34	~ 16	vĩ	La Crosse AP	-18	- 8	M
Great Fails AP NEBRASKA	-29	-16	L	Madison AP Milwaukee AP	-13 -11	- 5	- M - M
Lincola CO	- 10	0	M	WYOMING			
North Platte AP Omaha AP	-13 -16	- 2 - 4	M	Cheyenne AP Rock Springs AP	- 15 - 16	- 2 - 1	M VL
	18	26				•	-
Reno	·• ·	~~	VL VL				

(a) When airport temperature observations were used to develop design data, "AP" follows city, "AFB" follows Air Force Bases, and "CO" follows office locations within an urban

area. "cold hours < 7 mph. L — Light 50 to 697 cold extreme hours < 7 mph. M — Moderate, 50 to 747 — Cold extreme hours < 7 mph. H — High, 797 or more cold extreme hours < 7 mph. M — Moderate, 50 to 747 — Cold extreme hours < 7 mph. H — High, 797 or more cold extreme hours < 7 mph. M — Moderate, 50 to 747 — Cold extreme hours < 7 mph. H — High, 797 or more cold extreme hours < 7 mph.

TABLE 3 — FREQUENCY	OF	HOURLY	TEMPERATURES
-		•	

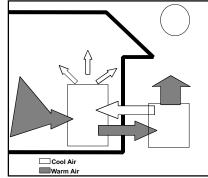
											1	Filiaqu Ma	BUICT and pe	OF HO	711.7 1 7 8 ci		BATU Invis	R BC	Be wi	and on	1991-	80 ees	1946-0	tions : I4	ner te	L (B)			
	-30	-23 ta-21	-20	-13	-10				10	L. B	20 20	2 2 2	30				<u>, 31</u>	31		1.1	7	7		15	20	1 13		1.1.1.2	
Riveringhose, Ale.	\square	<u> </u>	-	F	[[L.	L.	17	6	131	22	113	.588	61	69	73.0		_	11.31		658		263	4		-*	
Mobile, Ale. Monigomery, Ale.									I		7	8	179	214 346	5	506 998	609 679	698 723	754	1016 60e	1111	1391	750	536 537	208 161	0	2	•	
Anohorege, Ales. (5) Cold Bey, Ales. (8)	┣	<u> -</u>	- 26	<u>×6</u>		185	211	285 39	376 138	303	660 V76	775 673	811	711	617 1377	781 1964	1995	930	100	مقد	- 22			_				\square	
Pairbanks, Alas. (8)		159	206	270	392	10	10	179	ła.	447	197	455	695	69	-	<u>91</u>	637	658	519	161	22	119	94	15	1				
Eg. Salanen, Alas. (5) Phoenix, Artu.		<u>N</u>	AT.	184	980		250.	257	299	181	191	640	995	1087 188	872 181	983. 590	9 6%	996	250	111	143 760	13	798	6:6	61	507	-	122	19
Tasses, Arts (8) Little Book, Arts	┝							-		-	2	172	(1) (1)	2148. 509	N17 605	5 5	716 616	800 6778	763	761 803	870	970.	Ξ	655	120	197	152	_	
Reharmfield, Cal. (8)		Ŀ.										7	11	817	542	76	908	977	966	898		947 752	695 613	565 170	11	107	24	1	÷
Barbank, Cal. France, Cal.											+	*	10	- 85 - 36				1958	1568	1161	_	565 607	390. 1900	217	189	192	 56	+	
Los Angeles, Col.	<u> </u>											_	÷	10	107	. 106 .	_		2193	1655	. 601	100	.117	20	7	1		÷	
Onkland, Col. Searcheate, Col.													_20 _11	.195. 195	308. 708.			26.11 1389	_	756 773		195	61 .375	- 26 276	192	2	+	+	•
Sun Dings, Cul. Sun Fransisso, Cul.	-					<u> </u>		┝					10		99	386		1736	1964	1956 664	1016	416	126	1	7				
Cole. Spys., Cole. (8)			-1		7	10	41	π	15	262			795	£ 11	-	725	760	805	765	600	177	397	276	175	M	1			
Destrier, Cole, Restleril, Cone. (8)			+			2	× v	78 77	119 153	216	_	553. 598	721. 585	737. 807	698 681	704 575	676 649	758		684 755	549	419	112 274	236 118	<u>103</u> 29	10		┝──┥	
Witnington, Dol.						+	-			207	100	3 9	8	816	72	70	668	75	781	804	849	630	390	209	. 66	16	2		
Wesk'm, D.C. (Her'L) Joshuenville, Ph.									17	-94 	198	254	542 - A1	794) 194	.790 263	-694 755	690 530	671		766 975	960	71/2 1561	- 52% 885	- 305 - 693	.114 299	<u>21</u> 57	1	<u> </u>	
Manti, Pa. Orlanda, Pia. (8)	_											-	30		26	71 281	147	277 563	630	A10		2461	1796	83	127. 200	2			
Tallahasses, Fis. (6)											•	57	126	219	18	ž	59	760	895	1061	1618	1275	m	530	160				
Through, Pin. W. Palmi Japanis, Pin.													<u>مر</u>	18 18	177 77	27.6	.395 208	570 271	477		1307	1910	1126 1653	752 860	195	<u> </u>		 	
Atlanta, Ga.								2		.10	-	112	270.	468	. 798	676	735	784	623	986	1185	061	625	191	177	8	2		
Angusta, Ga. Mason, Ga. (8)									2	17.	- 99.	100	256 270	181. 192	.921. 101	- 609. SM8	678 668	755	827 800		1237 1239	909 965	664 664	500	<u>206</u>	_85	<u>1</u>	*	$\left - \right $
Surrannah, Ga. 'No, Korrat (8)										1	2	68	195	×	ř.	8	613	739 11		1001		1191	768	.577	224	-53	د ا		
mahete, Horrag											_							6	109		2763	2126 3958	975 1972	25	1				
raine Ini. (Pan.) (8) Josep, John						6	- 11	*	.5	168	307			876	878	796	766	708		<u>।</u> जन	Gen. Iane	3136 775	3964 716	<u>861</u> 230	15	b .b.		<u> </u>	
Chie. (O'Enro), 12. (5)			-+					_114	172	222	X1		110	738.	546	538	.550	412	682	776		492	352	162	50	2			
Chin. (Mikiway), Ill. Methos, Ill.]2 22	1	- 8	<u>As</u> 117	117	196 287	195. 195	951 601	222	800 665	901	530	969 533	500	.661 608	769. 777	- 752 725	_563 _563	370	220	105	27	2	 	
Springfait, III. Preserville, Inc.	_	-								1 A	172	.53	73	679	-	. 557	sine.	56	692	716	Ane	671.	_ion	277	137	27			
P. Weyne, Ind.					6	19	30	2 - 22 - 23	97 385	10a 205	180. 180.	371. 996	668 905	.693 785	668. 668.	619 978	(d) (d)	634 508	-680 - 689	784	- 2 -8 - 7-8	718 525	538 363	376 159	_120 71	300 13	6 1		
Indianopalia, Ind. South Build, Ind. (8)			*	2		-11	- 35 17	60 Bu	_97_ 166	198 250	£ 2	-151 661	200. 870	719 526	.603 503	- 579 526	- 566. 567	_505 605	728 728	A15 806	अन्त 6:6	610 507	.113 118	220	 \$1	12			
Des Maines, Iowa			-1		n		105	192	211	31	105	597	747	687	510	61.0	535	600	<u>681</u>	752	702	566	178	212	102	26		+	
Shouz City, Journ Topeka, Kenn		+		_15 _+	- 12	71	125 31	<u>176</u> 70	268. 125	792 205	<u>443</u>	515 100	670	<u>මා</u> 675	530 997	520 50	519 567	550 576	621 630	679 707	<u>648</u> 717	557 677	500	250	122	18 99	ہ 21		<u> </u>
Wishin, Essa. Lozinghun, Ey. (6)					1	7	1	4 A	85	jer Let	1	46	1	50h 687	611 689	958 611	2 8	603 656	61	709	τå	703	527	161	259	• 77	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	
Louisville, Ky.			+	+		1		25	_60_ - \v5	244 97	16	338	673 671	703	6.	634	619	 	_710 _691	. 898 . 758	977 869	_630 _712	531	263	<u>62</u> 192	- 11	1		
Baten Benge, La. Laim Charles, La.												19 17	117 78	205) 363	<u>- 367</u>	<u>- 108</u>	<u>60</u>	669 718	797 807		196	_	800 201	500	754 110	- 14			
New Orleans, I.s.							+	•		+		9	17	128			60	600	.850	987	33/12	1671	-979	620	223	_12	+		
Shroregori, Lo. Partiant, Mo.			1	5	· 5		_	100	2 _190					961 8789				679. 805.			1061 107				- 778 - 18	<u>.</u> 23	- 21	1	
Baltimore, Md. Boston, Mass.					,	-	-*		<u>49</u> 73		18h		<u>са</u>	775				. 696. 781.		796 619			315	263	100 13	 10			
Detroit, Mah.			_				17	4	12	24	11	64	33.	-	-	- 566	-	611	695		221	516	- 914	هند	17	-10	-		
Plant, Mash. (8) Ground Hapida, Mash.		*		1	1 1	10	75	194 78	205 172		1de 1de		- 165. • 16					610 67	_		- 578 - 678	- 141 - 141	. 211	277	_11 _11	-+	-		
Dubeth, Mass.		15		80	_131	187	216		TK	190	68	a.			546	67	785	733	630	. Les		198	101		_2	_1			
Manasapalis, Man. Justeen, Man.			20	2		119	186 1	296	311 2	- 181.	- 511A - 14		. 639. 205			100 605	. 530.		- 605 - 790		 1160	_168 1056	895. 690	117	42 112	A	_+ -4	_	_
Xanone Chy, Mo. R. Londs, Mo.						-	25	я 1		171	265		992		a 1	- 542	.953	572	60	773	751	-710	615	.iai	256	<u></u>		4	
Byrangtall, Mo.	_	_				¥	-15	<u>. 10</u>	 		276	137	-	6m	86	- 576 - 601	585. .608	- 575 - 680	696 799	726 .016	_	. 761 .647	_579 _175	376	195 154	_65 _60	 >	-	<u>_</u>
Grunt Palls, Mont. Omaha, Neb.	\	19	- 61	<u>9</u>	15	<u>مر</u>	<u>81</u>	156	107 109					613 675			500	753	636	980 781	14.7	226	187 NAS	.111	<u>کر</u> عاد	-1		<u> </u>	
Les Vegas, Hor. (8)									_		1	8	194	. 996	-	76	Ta	766	. 669	-04	62	660	.676	602	121	-12		100	74
Sama, Hov. (8) warts, H.J.					1		_19 _2	- 1	<u>את -</u> אר	.887. 109	107 202			. 889 866	.4900 7800	- 900) 770)	1865 678	690 697	. 572 . 755	ЪТТ Ana	_N& 		 	263	120	- 75	-	᠆╂	\dashv
Augustyne, N.M.		_				1	_1	-	2	66	15	ЪĘ.	578	Ø 0	712		67	65	719	811	167	635	502	371	222	65		⊐	
.theory, M.Y.			1	5	10	<u> </u>	61	110	184	275	101	774	771	769	07	621	652	708	710	713	925	117	256	12	77	8	I		

New Data to be inserted.

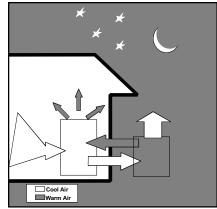
												7836	TENCY	07 80	ORLY		RAT	73.26											
	-30 ta-25	-25 ta-21	-20 te-16	*13 te-11	-10 50 -6		10 4	ça 9	te 14	to 19	20 to 24	13 to 29		33 te 39	10 10 44	43 to 45	50 te 34		50 50 6 4	63 ta 65	70 to 74	e. ?	04 10	63 (e 67	90 20 94		196 SeiCL	103 to109	tell
Ingh'n, J.T. (8)				1	5	21	67	156	261	350	515	658	873	666	578	595	673	695	808	781	She.	318	165	<u>.</u>	2				
athio, H.Y. Iow Turk (Inti), H.Y.						24		61. 10	170	261 2	186	608 330	601	-7%6 058	647. 838.	624 796	666 722	700 715	760 .754	न्तर हेरा	<u>.646</u> 926	604	263 263	<u>Ao</u> 96	<u>16</u> 20				-
iew York (LaGus), N.Y.						+	.1	30	2	8	183	112	5 86	626	3 2	741	718	730	711	829	876 (7	683 778	383. 246	169_ 122	99 11	_ 19 7	2		-
ochostas, S.Y. Phones, S.Y.		+	2		- 2.	9 21	36	97 108	181 190	278. 288	130 198		851 630	761 720	662 651	648 641	631. 656	695 737	734 783	738 735	601 621	U.g	269	122		1			
hariotto, 3.0. Percebaro, 2.0.					_					2	6A 136	166 264	§ §	515 611	634	68%	730	758 734	839 827	908	1115 1013	757	567 498	197 137	201	_ <u>52</u> 20	_ <u>_</u>		–
alaga, F.C.				·			2		<u>22</u> 11	50	101		940 310	597	651 616	668 672	696 707	760	AMA	_	1087	715	-51A	-737 259	161	3	-		
Instan-Salam, N.C. (8) Ismaruk, N.D.							-		. 18	2	116	294	156	682	708	706	70	606	âa	207	1006	203	-51A	.121	19	7	5		
irgo, 313.	•	20	107	π	182	20	278	202	116	.171	<u>b75</u>	.990.	.631	- 60	518	_580.	-563	606	<u>er</u>	566	h5h.	357	252	191	78				
izron-Canton Apt., Chio Instancei, Chio				+		11		ØT.	153	-	142	86	877	_	630	616	611	886	778	819	675	437	273	112	24	1	*		
eveland, Obie						21	-18- 9	14) 140	108	198	210 346	960 561	711 809	<i>60</i> 8 760	607 614	. 599 615	611 613	610 645	.726 733	811 811	877) 721	690 568	667 311	261 155	98 56	17 8	+		
okumisus, Ci <u>kin</u> uytum, Cikin				-		10	8	10		160 190	280	508	Ę	78	66	603	<u>699</u>	647	720 717	. đen	778 817	956	105 108	279	92 65	<u>ور</u> 8			
rengelown, Okio	-		+		- 4	_16 _10	21	9	99 198	210.	30	179. Geo	786 890	660 680	601 641	576 620	. 560 665	604	717 772	832 691	617	601 1.21	265	208 102	2 21	2			
tishana City, Cita.						1	1	19	×	π		287		570	<u>61</u>		84	<u>A1</u>	717		861	762	576	192 1	3	113	29	2	+
inditant, Con.						- 1		19 #		75	199	261	667	135. 908	611 1119	6377 1083	688 1012	616 898	671. 713	50	878	816 199	.6-9 231	1 	312	<u>169</u> 59	49	10	Ė
ortiand, Cro.								1		10	10		-			1271	1874	1316	1001	- 10	m	21	126	54	21		1		F
liam, Cro. (8) arristong, Pa.	<u> </u>				+	_1		+ 18		20	222	179	115 719	707	1100	196	1998 635	1161 678	833 737	540 - 88%	405 807	26) 156	169	102	47 50	14	2	+	\vdash
Mindelphin, Pa.			-					-		100	109	335	.63	618	778	70	661	710	735	809	861	655	120	225	71	17	1		F
Hairungis, Pa. (6) Brains, Pa. (6)	<u> </u>				,	7	30	1	199	213	100	575	775	696. 805	610. 608	587. 578	<u>637</u>	678		.910 .808	772 666	-501 111	254	08 81	12				t
rovidence, B.Z.					L.		•			161			789	829	790	761	760		622		66	134	229	86	25	2			
barlonius, 8.C. niumpida, 8.C.					<u> </u>			+		19	1	1	198	321	194	576 681	. 651 673	797 728	. 609 606	1090		1169 980	72%	1425 1489	137	20	1 11	1	-
uren, S.D.	1	7	2	*	a	165	208	250	305	419	176		62	575	508	108	913		614	_	. 55k	443	n8	205	101	27	,	+	
upić City, S.D. (6) koliuszagi, Taus.	├—		<u> </u>	مد		79	28	199	14	277	111	278) 278)	742	<u>694</u>	675	6 81 679	698 711		615		1021	370	275	199	105 221	52	10		\vdash
nozville, Tenn.						÷	12	1	2	h	Lia.	217	106	590	64	600	672	675	716	. 889		756	995	. 364	_153	29			
iamphis, Tuna. askylia, Tuna.	┝				<u> </u> +	+	+		10		119	264	100	598	601	<u>611</u>	617	690 697	715	256	977	 	670	140	305	172	10	+	
martilo, Tur.				+	2	2	6	21		124	213	_	_	67		651	65			_		600	174	109	757	.95	14	1	
ustin, Tex	<u> </u>							+			10	6	229	<u>813</u>	116	205	617	. 679.	-717 653		1016	1250	.812	. 601 . 833	176	267	<u> </u>	2	┼─
rovrasville, Tur. orpus Christi, Tur.										+	1		71	81	180	38	444	551			1175	_	1100	785	14	*			
tilles, Ter.	<u> </u>								-	17		91 105	211	171	SON.	576 61	689 691	666 760	691 796	.795 619	An.	342	530	659 902	123	271	7	<u> </u>	┝
l Pass, Tox. L Worth, Tox. (8)			· · · ·							12	14	19	234	100	518	591	64	644	629	776	.933 804	949	720	595	- 140	256	. 53		
alveston, Tex. Iouston, Tex.										1		L.	π	π	178	116	597		1000		1005	1155	1611	832	62 - 677		~	<u> </u>	╞
aredo, Tez.							<u> </u>			+			18		161 198	.291 .191		570 561	68a 68a	_	950 953	1172	1161	949 801	677 525	27	100	2	
ubbook, Tur. (6)	<u> </u>						5	1	.11	86	100	356	490	546	600	618	64	700	688		Å 77	778	_	647	122	100	- 14		
Delland, Tex. (8) An Antonio, Tex.				f					<u> </u>	21	. 11	161	377	391. 190	608. 187	669 645	631. 569.	678 669	720		913 1086	869. 1336	671 871	572	170	177	_2f	+	Ĺ
Face, Taz. (6)									1			84			50		651			830		1101	827	612	182	219	- 2	1	
ait Laise Chiy, Their. (8)							+ 16		10	27								606 675					101	300 709	195	260 64			
usius, VL (6) Iorinis, VL	\vdash	-	5	17			12	me		198	Jon.	90	790	716	.637	601	653	604	701	670	571	14	189	-97	9	1			
inimand, VL								-	19	11								757							161		6		
canche, VL. (8) Mile-Takona, Wash.								-	\mathbf{r}									708			1	T			91	8			-
pokane, Wash.			-			36												775			258. . N1 N			26	66	- 2	,		
ha Jana, P.L. (WL) hariestan, W. Va. (8)												_											2540		19				
rum Juy, Wine. (8)			ί,	19	1		160											680 770					175	- 5 6	47				Ċ.
ladious, Was.	<u> </u>			•	•		مد	16	211	323.	100		1.84	61	97	526	515	60	715	685	997	199	20			4			_
Evenies, Wise. Aper, Nya.		E,		19														63) 64							65				E
_		F			·	—	—		F			F														—			F
•	F		<u>t</u>	t	+	┼──	+	 	<u> </u>		E			-	<u> </u>		<u> </u>	E		E									
		ļ			1	ļ																	—				F		F
		<u> </u>	╂	<u> </u>	┼──	╂		+	╂	 		<u> </u>														<u> </u>			E
			1																									-	ļ
	L	1	1	1					-	L		1	L	ł	L			L			<u> </u>	ļ	ļ			L			
							T			I		1										•							

New Data to be inserted.

The Heat Pump Story

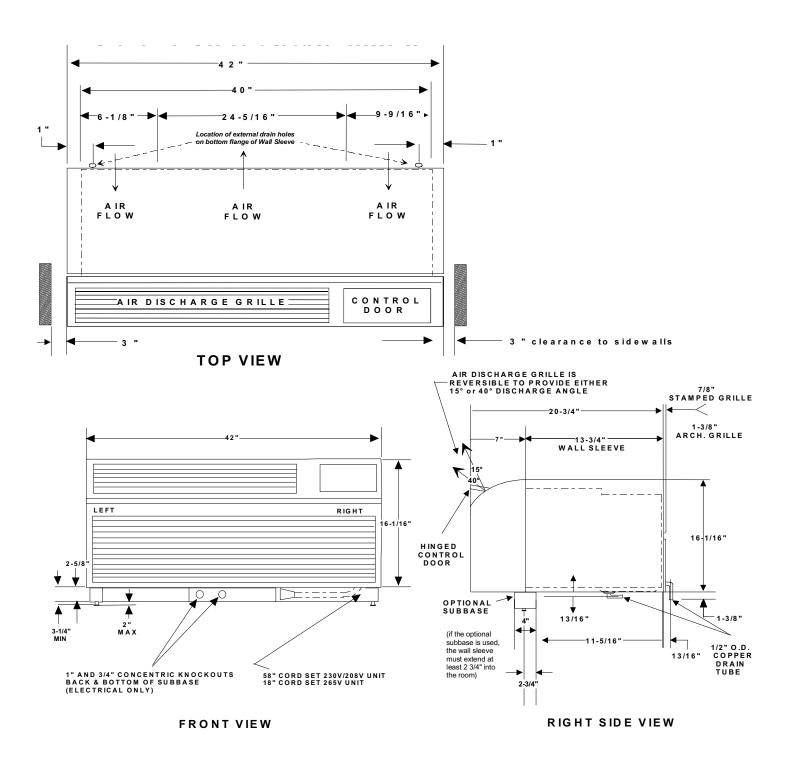

Special Features of the Heat Pump Cooling-Heating System

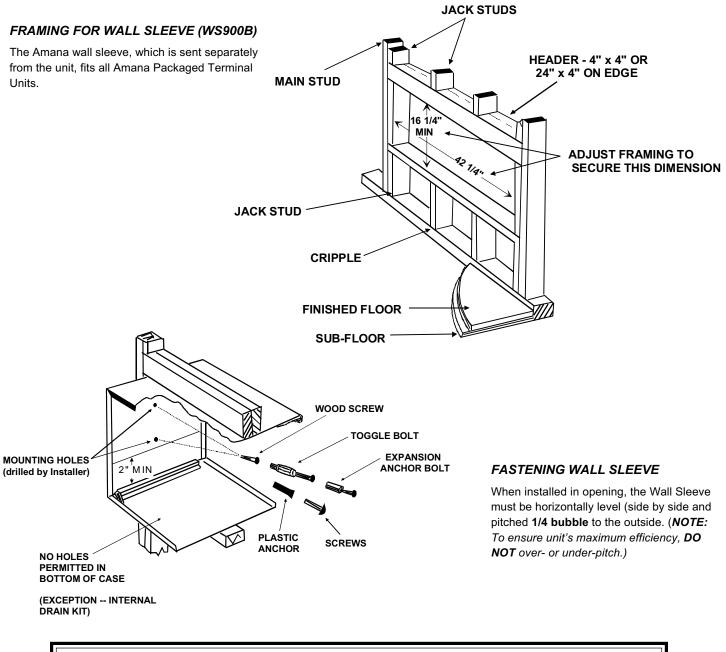
Amana Packaged Terminal Units are engineered to ensure an efficient heat pump operation while monitoring room conditions to maintain comfortable temperature levels.


Heat pumps cost less to operate than units with electric resistance heaters as the only heat source because they *save* energy. The measure of this efficiency, COP (Coefficient of Performance) indicates a heat pump's relative efficiency as it compares to electric resistance heat. For example, if a unit has a COP of 3.0, that unit will produce three times as much heat at rating conditions for the same electrical input wattage as an electric resistance heater.

In hot weather, Amana heat pump units remove heat from indoor air and release it outdoors like normal air conditioners. In cool weather, Amana heat pump units take heat from outdoor and use it to heat indoor air. Heat is not *produced*, it is *transferred* which translates to money savings and quick cost payback.

As the outdoor temperature falls, the heat pump is able to extract less heat from the outdoor air to raise the temperature of the indoor air. For this reason, all packaged terminal heat pumps also have electric resistance heaters as backup to heat pump operation. At some point the heat pump is unable to provide sufficient heat to adequately warm the room. Many Packaged Terminal Heat Pumps cease heat pump operation and automatically switchover to electric heat. The compressor and outdoor fan stop and the indoor blower circulates warm air. When outdoor temperatures rise, heat pump operation resumes.


In warm weather, it efficiently captures heat from inside your home and pumps it outside for cooling comfort.

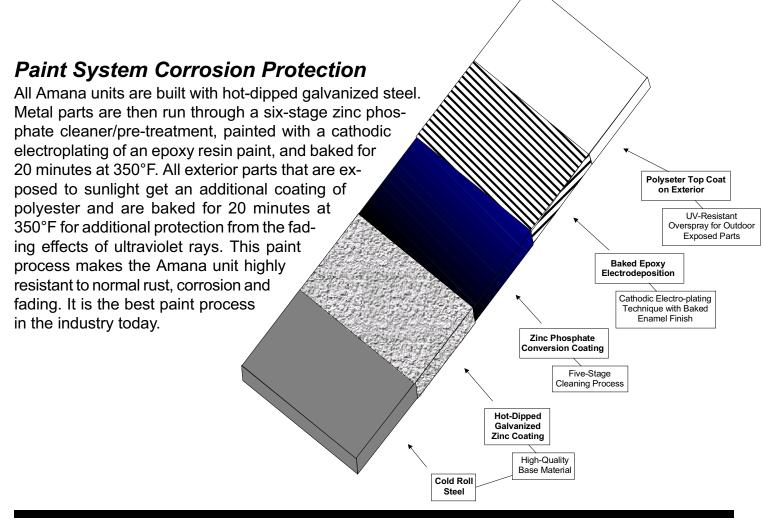


In cool weather, it captures heat from outdoor air and pumps it into your home, adding heat form electric heat strips as necessary to efficiently provide heat.

	н	eat Pump Hea	ting Sequence of Opera	ation	
Un	it Conditions			Unit Control	
Operation Sequence - Call for Heat	Room Temperature vs. Set Point	Outdoor Coil Temperature	Standard Unit Control	Remote Thermostat 1-stage Heat	Remote Thermostat 2-stage Heat
	Minus 1.5	>25⁰F	Heat Pump until set point is reached or room temperature is minus 2.5		
Low/High Heat	Minus 1.5	<25⁰F	Electric Heat until set point is reached		
	Minus 2.5		Electric Heat until set point is reached		
1st Stage Heat		>25⁰F		Heat Pump until set point is reached	Heat Pump until set point is reached or 2nd stage is called
		<25ºF		Heat Pump until set point is reached	Electric Heat until set point is reached
2nd Stage Heat		>25⁰F			Electric Heat until 2nd stage satisfied then return to 1st stage
		<25°F			Electric Heat until set point is reached
NOTE: 1. With all remote 2. An Auto Change			be low unless the high spe ove operational sequence.	eed fan kit is installed.	

INSTALLATION NOTES

- If Subbase (PTSB***C) is installed, allow minimum 3-1/4" height clearance and maximum 5" height clearance between cabinet and floor; allow minimum 2-3/4" height clearance from wall to front of wall sleeve.
- (2). **Drain Kit** (DK9001) shipped separately. Can be mounted either right side, left side, or bottom of sleeve. If mounted to bottom of sleeve, allow 2" height clearance from floor to bottom of sleeve.
- (3). For U.L. approval -- 265v units must use Amana **Subbase** (PTSB***C) or Amana **Hard Wire Kit** (PTPWHWK4). Over-current protection on 265V units must be by cartridge style time delay fuses which are included and factory installed on Amana chassis.
- (4). If **Hydronic Kit** (HWK03 or HVK03) is installed, **Wall Sleeve** must extend exactly 3 inches into the room from finished interior wall.


Amana Sea Coast Protection Units -- Special Order

To further protect units from the damaging effects of salt in sea coast areas or other highly corrosive materials, Amana does the following additional process:

1). The condenser coil is painted with the cathodic electro-plating technique, giving the coil a highly effective corrosion barrier.

2). The bottom 1/4 of the compressor is coated with a water-borne resin, a coating used for the undercoating of automobiles and for protecting buried pipes and cables. The resin is a highly effective barrier against rust and corrosion.

3). The outdoor side of interior parts are top-coated: the base pan weldment, the left- and right-side panels and the condenser shroud. The motor mount for the condenser motor, the evaporator scroll, evaporator air inlet panel, air inlet rings, and front support brackets are also electro-plated.

Hydronic Heat

Hydronic Models / Water and Steam Valves

These special models are shipped without a chassis front, without electric heat, and have an additional relay and 40VA transformer for water or steam valve operation. In addition, water and steam valves are available for use with the HHK03 (water) and HVK03 (steam) heat kits. These valves are available in 24 volt, two- or three-way flow, and either with Normally Open or Normally Closed position. All water valves are equipped with end switches.

Hydronic with Manual Door

Model Number	Voltage Capacity	Cooling Capacity	EER
PTC093A00HA	230/208	9,000/8,800	11.1
PTC123A00HA	230/208	12,200/12,00	10.8
PTC153A00HA	230/208	14,200/14,000	9.4
PTC094A00HA	265	9,000	11.1
PTC124A00HA	265	12,200	10.8
PTC154A00HA	265	14,200	9.4

Hydronic with Powered Door

Model Number	Voltage Capacity	Cooling Capacity	EER
PTC093A00GA	230/208	9,000/8,800	11.1
PTC123A00GA	230/208	12,200/12,00	10.8
PTC153A00GA	230/208	14,200/14,000	9.4
PTC094A00GA	265	9,000	11.1
PTC124A00GA	265	12,200	10.8
PTC154A00GA	265	14,200	9.4

Hydronic Heat Kit Application Data Heating Capacity -- Water

Hydronic with Powered Vent and Powered Door

Model Number	Voltage Capacity	Cooling Capacity	EER
PTC093A00FA	230/208	9,000/8,800	11.1
PTC123A00FA	230/208	12,200/12,00	10.8
PTC153A00FA	230/208	14,200/14,000	9.4
PTC094A00FA	265	9,000	11.1
PTC124A00FA	265	12,200	10.8
PTC154A00FA	265	14,200	9.4

Water Valve

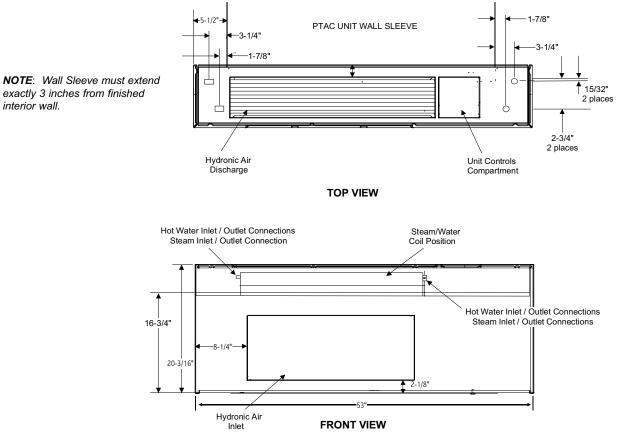
Model	Description	Position	End Switch
VW2WNOA	2-Way	Normally Open	Yes
VW3WNOA	3-Way	Normally Open	Yes
VW2WNCA	2-Way	Normally Closed	Yes
VW3WNCA	3-Way	Normally Closed	Yes

Steam Valve

VS2WNOA	2-Way	Normally Open	No
VS2WNCA	2-Way	Normally Closed	No

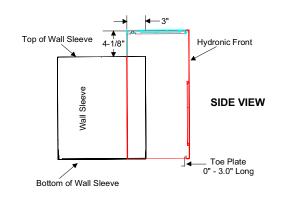
	Pressu	re Drop	7,0	00 & 9,00	0 BTUH Ur	nits		12,000 B1	FUH Units			15,000 B	TUH Units	
	PSIG		200 F	EWT	180 F	EWT	200 F	EWT	180 F	EWT	200 F	EWT	180 F	EWT
GPM		2-Way	Fan S	Speed	Fan S	Speed	Fan S	peed Fan Sp		Speed Fan		Speed Far		Speed
	Coil	Valve	Hi	Lo	Hi	Lo	Hi	Lo	Hi	Lo	Hi	Lo	Hi	Lo
1.15						11,693								
1.26										12,824				
1.35														14,166
1.35					13,479									
1.45				14,426										
1.51									15,303					
1.62								15,711						
1.63													15,545	
1.65			16,251											
1.79												17,740		
1.95							19,268							
2.1											20,445			

Based on ARI Rating conditions of 70 deg F Entering Air Temp., 200 deg. F Entering Water Temp and 180 deg F Leaving water Temp.


Heating Capacity -- Steam

STEAM	7,000 & 9,00	0 BTUH Units	12,000 B	TUH Units	15,000 BTUH Units		
PSIG	Fan Speed		Fan Speed		Fan Speed		
	Hi	Lo	Hi	Lo	Hi	Lo	
2	20,236	17,816	21,694	18,306	23,709		
3	20,686	18,253	22,100	19,003	25,676	21,099	
4	20,821	18,544	22,822	19,313	26,325	23,678	

Hydronic Heat Kit (HWK**A and HSK**A)


When a central boiler is available, the hydronic heat kit can be installed to the PTAC unit. This kit uses the existing PTAC unit front and completely encloses all plumbing and coils, but still allows easy access to controls. In addition, the chassis can slide out for easy service without removing hydronic plumbing. The kits feature left- or right-hand piping. Unit retains complete service access with kit installed.

Dimensions of Installation:

Hydronic Transformater Relay Kit (not shown) Add-on kit that allows converstion of a standard unit to a Hydronic unit.

Kit Ordering Number	Volts	Description
HTK3	230/208V	Hydronic Water Kit
HTK4	265V	Hydronic Water Kit

Hydronic Heat Kit Application Data Heating Capacity -- Water

			7,0	00 & 9,00	0 Btuh Ui	nits		12,000 B	tuh Units			15,000 B	tuh Units	
			200°F	EWT	180°F	EWT	200°F	EWT	180°F	EWT	200°F	EWT	180°F	EWT
GPM	Pressu	re Drop PSIG	Fan S	speed	Fan S	Speed	Fan S	Speed	Fan S	Speed	Fan S	Speed	Fan S	Speed
	Coil	2-Way Valve	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
1.15						11,693								
1.26										12,824				
1.35														14,166
1.35					13,479									
1.45				14,426										
1.51									15,303					
1.62								15,711						
1.63													15,545	
1.65			16,251											
1.79												17,740		
1.95							19,268							
2.1											20,445			

Based on ARI Rating conditions of 70°F Entering Air Temp, 200°F Entering Water Temp and 180°F Leaving Water Temp.

Heating Capacity -- Steam

	7,000 & 9,000 Btuh Units		12,000 B	tuh Units	15,000Btuh Units		
Steam	Fan S	Speed	Fan S	Speed	Fan Speed		
PSIG.	High	Low	High	Low	High	Low	
2	20,236	17,816	21,694	18,306	23,709		
3	20,686	18,253	22,100	19,003	25,676	21,099	
4	20,821	18,544	22,822	19,313	26,325	23,678	

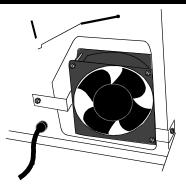
Water and Steam Valves

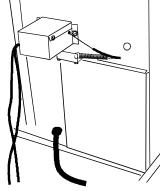
Water and steam valves are available for use with the HWK03A (water) and HSK04A (steam) heat kits. The valves are available in 24 volt, two or three way switches, and with Normally Open, Normally Closed switches.

Water Valve

Model	Description	Position	End Switch
VW2WNOA	2-Way	Normally Open	Yes
VW3WNOA	3-Way	Normally Open	Yes
VW2WNCA	2-Way	Normally Closed	Yes
VW3WNCA	3-Way	Normally Closed	Yes

Steam Valve


VS2WNOA	2-Way	Normally Open	No
VS2WNCA	2-Way	Normally Closed	No


Accessories

Power Vent Kit

The Power Vent Kit employs a specially designed fan to deliver approximately seventy cfm of fresh air through the vent during fan operation. It is designed for applications where fresh air ventilation is imperative.

Kit Ordering Number	Volts
PVK3A	230/208V
PVK4A	265V

Power Door Kit

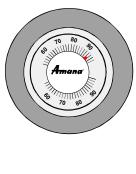
The Power Door Kit enables the unit to automatically open or close the vent door depending on fan operation. The Door opens when fan is operating and closes when fan is not operating. This allows for fresh air ventilation during fan operation and saves energy during outside temperature drops.

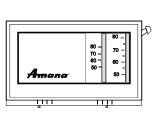
Kit Ordering Number	Volts
PDK3A	230/208V
PDK4A	265V

Condensate Disposal Pump Kit

The internal condensate pump serves as an effective means for disposing of condensate generated during heat pump operation by transferring it to the indoor coil. The warm coil surface and the warm room air help in evaporation of the condensate while adding humidity to the room. As with any equipment of this type, the addition of this kit will decrease the sensible heating capacity of the unit. This kit is not intended for use in seacoast or corrosive environments.

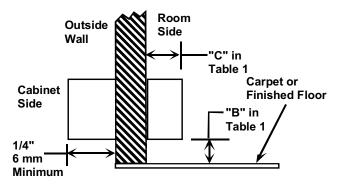
NOTE: Under extreme high humidity conditions, the internal condensate pump may not be able to dispose of all the condensate produced, and condensate would then drip from the outside of the wall sleeve. If this

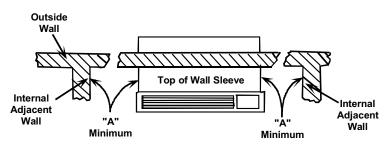

condensation is unacceptable, then a drain system (including factory approved drain kit for the wall sleeve) should be installed.


Kit Ordering Number	Volts	Description				
CDP302	230/208V	Condensate Removal Pump				
CDP402	265V	Condensate Removal Pump				
DK900-1	n/a	Condensate Drain Kit				

Model Number Features	THPMFC1H2BA (D9807605)	C5200609	D6853511	D9945801
Manual/Auto	Manual	Manual	Manual	Manual
Programmable	Yes	No	No	No
Cool	1	1	1	1
Heat	2	1	1	2
Emergency Electric Heat	Yes	No	No	No
One Piece	Yes	No	No	No
Shape	Rectangular	Round	Rectangular	Rectangular
Battery Powered	No	No	No	No
24V Powered w/Battery Back-up	Yes	No	No	No
Zoning Application Suitable Zone	Heat Pump Master	N/A	N/A	N/A
For Use With:	PTAC	PTAC	PTAC	PTAC
Color	Beige	Gold	Beige	Beige

Thermostats

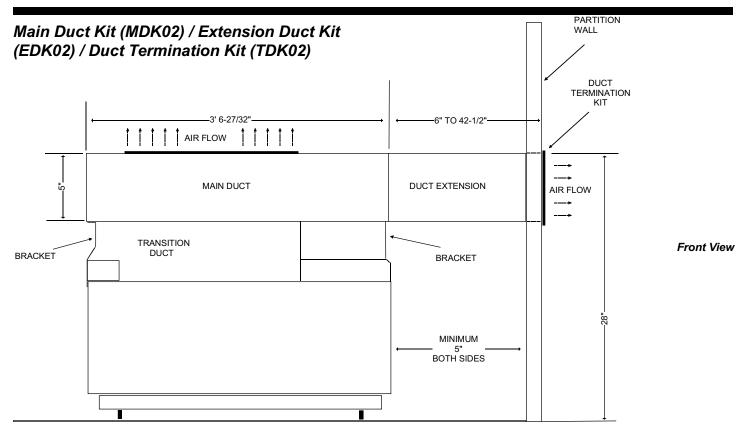

The following thermostats offer remote control.



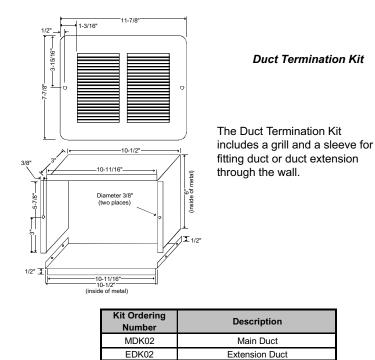
Minimum Clearances and Projections

Installation of accessory kits requires drilling of mounting holes on both sides of the wall sleeve. The minimum required clearnce distance between the wall sleeve and the wall is show in Table 1. If the distance between wall sleeve and wall is at or near the minimum clearance distance, mount these kits on the sleeve before installing the sleeve in the wall.

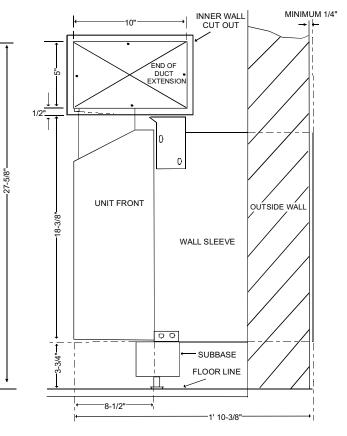
Minimum Unit Clearances



Minimum Interior and Exterior Projections

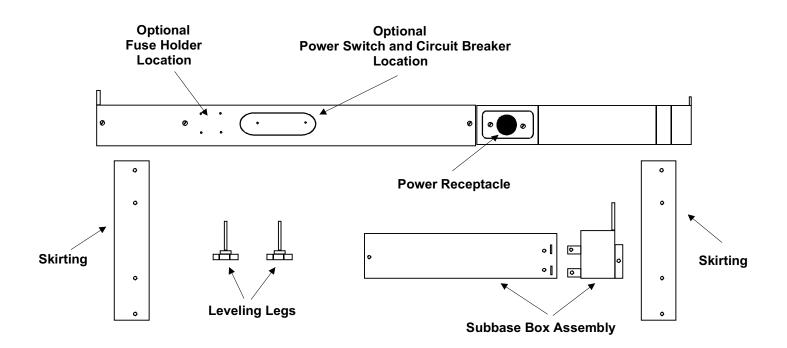

Minimum Clearances and Projections									
	Minimum	Clearances	Minimum	Minimum Projection					
Option	Inches	mm	Inches	mm					
Wall Sleeve Only	3	75	0	0					
Subbase Kit	3	75	2 3/4	70					
Leveling Legs Kit	3	75	2	50					
Duct Kit	3	75	1 3/8	35					
Hydronic Heat Kit "A Series"	9	230	3 ¹	75 ¹					
Hydronic Heat Kit "J Series"	6	150	2 1/2	65					
Drain Kit	3	75	0	0					
Hardwire Kit	3	75	0	0					

¹ To achieve a flush fit between the hudronic front and the finished wall, the "Minimum Projection" must be between 3" and 3-1/8". If this dimension is more than 3-1/8", there will be a gap between the front and the wall. The gap could permit occupant access to hydronic lines or other dangerous parts.


Accessories

When two adjacent rooms need to be conditioned, a main duct kit and a duct extension kit are possible options. These kits transfer air from one room to another, yet allow different air flows for the rooms (airflow distribution can be adjusted from 65/45 to 80/20.

Terminal Duct


Cutaway or Installation View

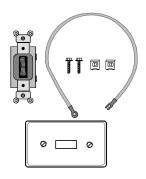
TDK02

Standard Electrical Subbase (PTSB***C)

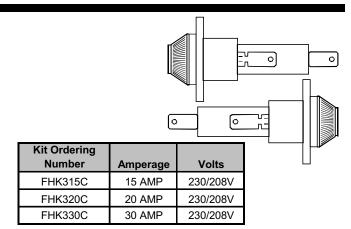
The fully skirted subbase conceals wiring while providing strong support, if needed. Plug-in receptacle and field wiring access speeds installation. Electrical accessories such as fuse holders, circuit breakers, and disconnect switches meet N.E.C. requirements and can be installed in the unit subbase. For subbase locations of these accessories, see the drawing below.

The subbase may be installed onto the wall sleeve either before or after the sleeve installation. The minimum clearance between wall sleeve bottom and the finished floor is 3-1/4"; maximum height clearance from bottom of wall sleeve and the finished floor is 5". The minimum clearance between wall sleeve flange and finished wall is 2-3/4".

Model Number	Amps	Voltage	Receptacle Configuration
PTSB320C	15 & 20	230/208	NEMA6-20R
PTSB330C	30	230/208	NEMA6-30R
PTSB420C	15 & 20	265	NEMA7-20R
PTSB430C	20	265	NEMA7-30R


Standard Electrical Subbase

Accessories


Fuse Holder Kit (FHK***C)

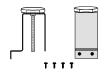
An optional fuse holder kit is available for all Amana Packaged Terminal Units . It can be installed directly in the chassis or in the optional subbase (included on 265 volt unit).

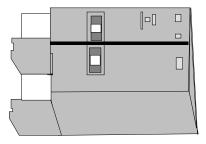
Fuse holder kits are available in 230/208 volt ratings at 15, 20, and 30 amp.(Fuses not included, but may be purchased from the parts department).

Kit Ordering	
Number	Volts
PSHW03A	230/208V
PSHW04A	265V

Power Disconnect Switch (PSHW0*A)

An optional 230/208 volt or 265 volt power disconnect switch assembly kit can be installed in the chassis on any Amana standard subbase, or in the junction box of the hard wire kit. The switch proves a POWER ON/OFF function as required by some electrical codes.


Circuit Breaker Kit (CBK3**C)


The circuit breaker kit can be installed on any Amana full length subbase. Once installed, it provides a POWER ON/OFF and current overprotection function* at the unit. Refer to the table identifying each circuit breaker kit by amperage, voltage, and kit ordering number.

Kit Ordering Number	Amperage	Volts
CBK315C	15 AMP	230/208
CBK320C	20 AMP	230/208
CBK325C	25 AMP	230/208
CBK330C	30 AMP	230/208

Leveling Legs

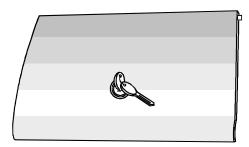
Optional leveling legs fit wall sleeve to provide front support and leveling, if required.

*On permanently wired units, if the compressor mode amperage is greater than 6 amps or if total load amperage is greater than 15 amps, the cartridge style time delay fuse must be used (per N.E.C.)

Kit Ordering Number	Description
LL-2B	Leveling Legs

Accessories

Hard Wire Kit (PTPWHWK4)

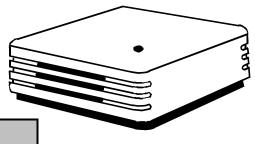

Used to direct wire to the unit when it is not desirable to use the standard unit subbase or the unit power cord. The junction box provides

Kit Ordering Number	Description
PTPWHWK4	Hardwire Kit

a protected enclosure for electrical connections as required by some electrical codes. Circuit breaker kits (below) can be added to the direct wire subbase.

The hard wire junction box can be mounted either before or after the wall sleeve is mounted in the wall and the unit chassis is installed in the wall sleeve. According to the N.E.C., the hard wire junction box can be installed on flush mounted installations. However, the junction box needs to be located either on the floor or the adjacent wall.

The junction box is furnished with approximately 3-1/2 feet of 1/2-inch flexible steel conduit and a 90-degree conduit clamp for securing the conduit to the unit cabinet at the electrical access opening.


Security Key Locks (KL03)

The Amana Key Lock kit, in conjunction with the tamper-resistant front, prevents tampering of the controls used to set temperature, heating, and cooling functions. This accessory fits all PTAC models. U.L. approved for institutional use only.

Kit Ordering Number	Description	
KL03	Security Key Lock	

Remote Temperature Sensor (RTS01)

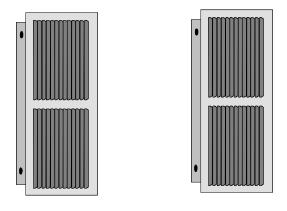
With control functions remaining at the unit, the remote temperature sensing feature is a unique accessory capable of providing accurate sensing of recom temperature from a central location, separate from the unit.

Kit Ordering Number	Description
RTS01	Remote Temperature Sensor

Spare Filters (not shown)

Helps keep dirt and lint out of the air and off the coil, thus increasing unit's efficiency. Amana filters are easy to remove, wash and replace.

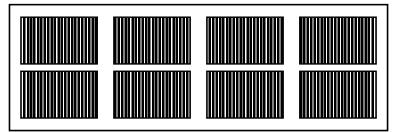
Kit Ordering Number	Description
FK10A	Filters (10 / pack)


Remote Escutcheon Kit (not shown)

Optional kit for use with units controlled via a wall thermostat. Replaces knob controls for units operated by wall thermostat.

Kit Ordering Number	Description
REK10A	Remote Escutcheon Kit (10/Pack)

Condenser Baffle Kit (DGK1)


The kit includes two air deflection baffles that mount on the condenser coil. Use the baffles where an older unit is being replaced and the existing grille does not have deflector baffles. These deflectors direct the air in toward the center away from the inlet to prevent recirculation of the hot condenser air.

Kit Ordering Number	Description
DGK-1	Condenser Baffle Kit

Standard Outdoor Grille (SGK**B)

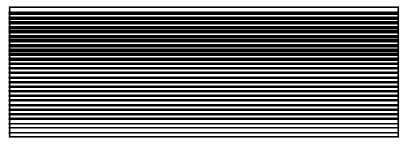
The standard outdoor grille is stamped from durable mill finished aluminum, protecting the outdoor components from the harshest weather.

Standard Outdoor Grille						
SGK01B	Single Pack					
SGK10B	Ten Pack					

NOTES:

1). All grilles must be installed prior to chassis installation.

2). If using a DK9001 kit - the drain kit must be installed before the grille is installed.


3). All grilles have handles and install from the inside of the room to allow for easy

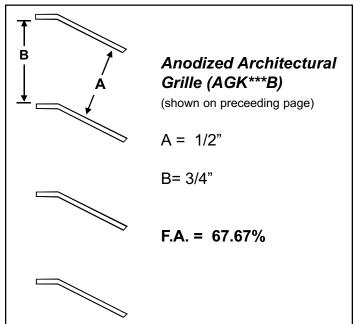
high-rise installation. Handles should be removed after installation is complete.

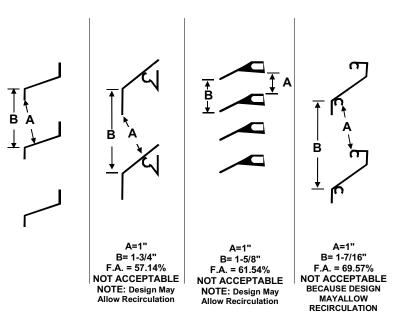
Anodized Architectural Grille (AGK***B)

The architectural grille is an option which gives an attractive architectural outdoor appearance. The architechtural grille is available in anodized Natural, Driftwood Tan, Dark Bronze, White and Custom colors to blend with building exterior.

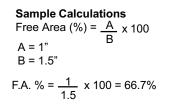
Specify color when ordering:CB=Clear; DB=Dark Bronze; ZB=Driftwood;WB=White' SB=Special (Custom) Color

Anodized Architectural Grille						
AGK01*B	Single Pack					
AGK10*B	Ten Pack					

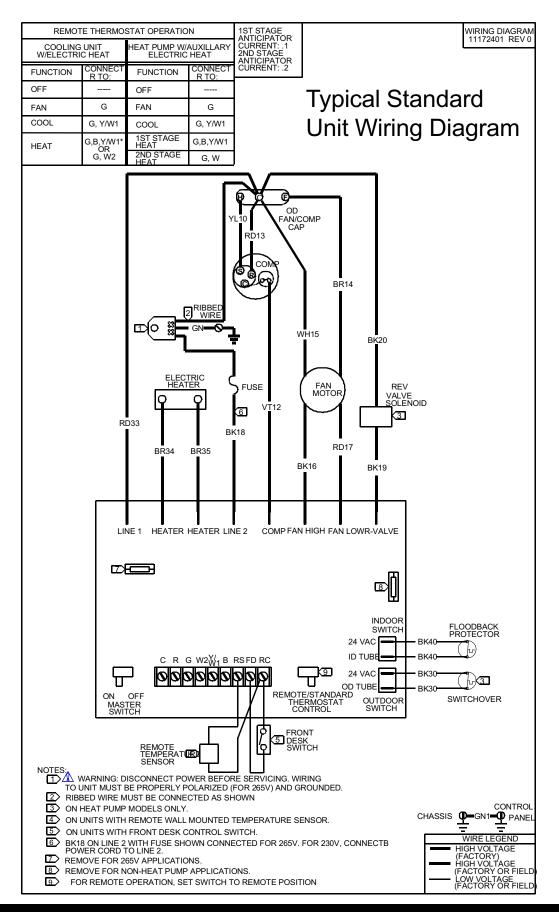

Accessories

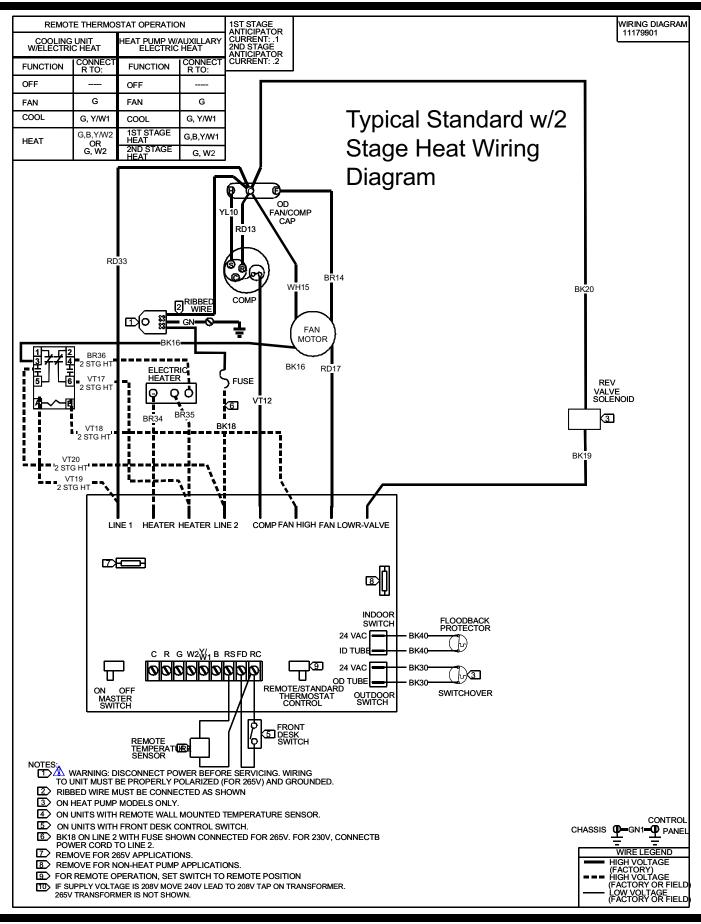

Special Outdoor Grilles and Exterior Architectural Treatments

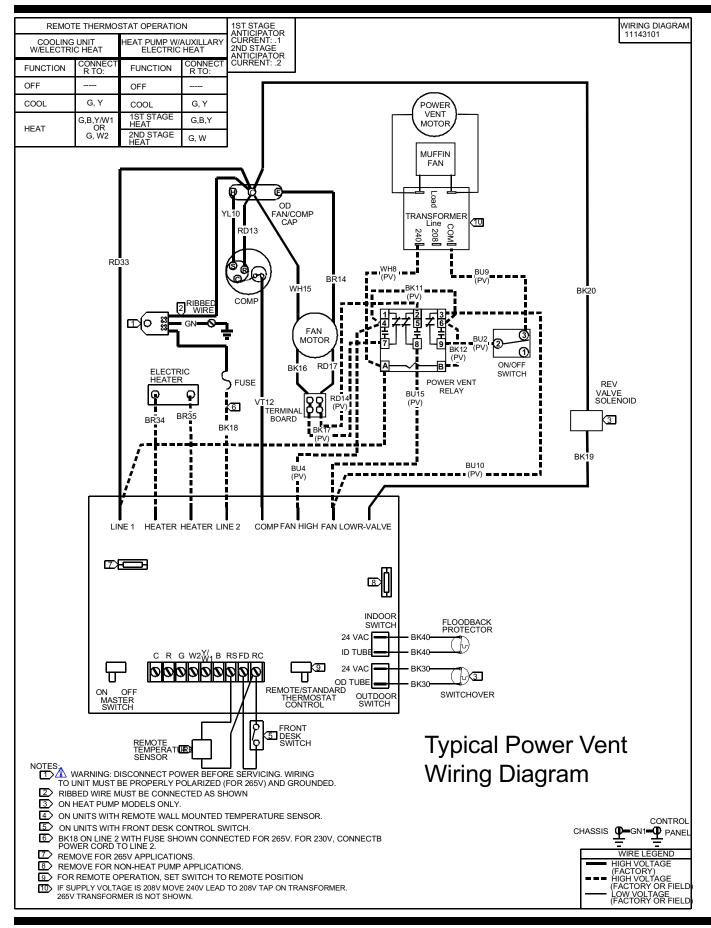
Two styles of exterior grilles are available for the Package Terminal Unit (see page A-32). Occasionally however, the design of a building may necessitate the use of special or oversized louvers for aesthetic reasons. Louvers other than standard Amana Exterior grilles may be used on the Amana unit, however, these special louvers, or any special exterior architectural treatments of the building facade may restrict the free circulation of condenser airflow and should be referred to Amana Application Engineering for evaluation and approval. The following guidelines should be followed in selecting a louver:

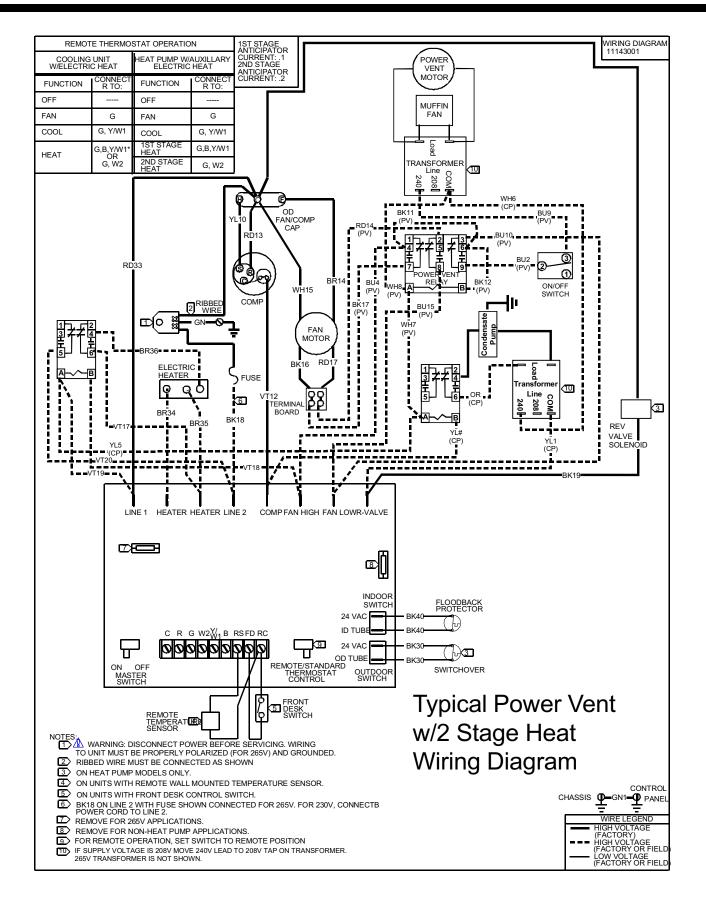

- 1. The louver must have a minimum of 65% free area and a blade design that will not cause recirculation of condenser air. ASHRAE defines free area as the minimum area of opening in an air inlet or outlet through which air can pass. Percent (%) free area equals the A dimension divided by the B dimension.
- The louver should be attached to the wall case in manner that will prevent recirculation of condenser discharge air into the air inlet. If the louver is not attached to the wall case, a field supplied splitter or gasket is required between the chassis and the louver.

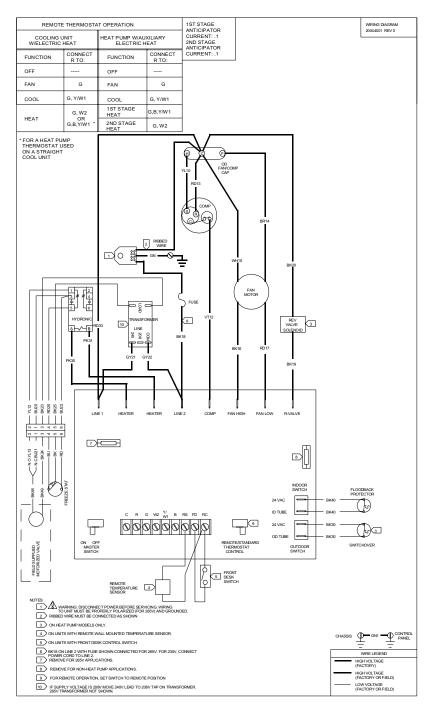
It is imperative that the above criteria be followed since a louver design that restricts the passage of condenser air or allows recirculation will reduce the unit's capacity and efficiency, increase the current draw and shorten compressor life. A scale drawing of the louver section should be sent to Amana Application Engineering. To assure the proper performance of the Amana unit and comply with Underwriters Laboratories requirements, it may be necessary to send a sample louver section (at least 16" x 42") to Amana to be tested with the Amana unit.




Examples of Grilles that are not acceptable.

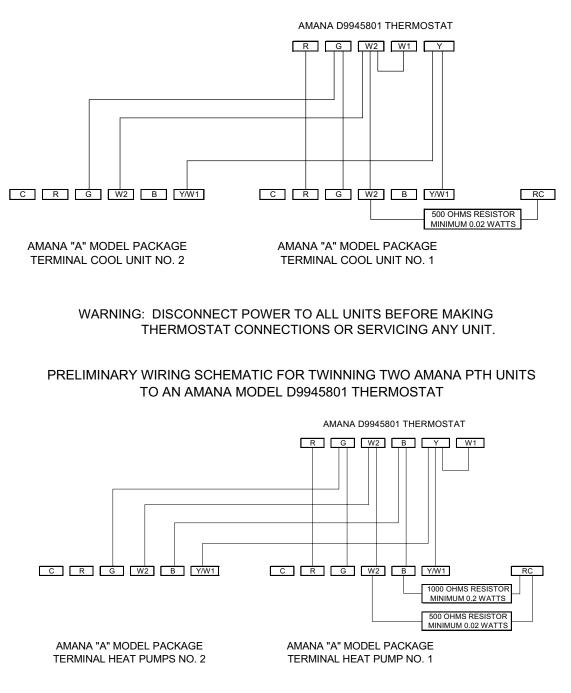

Please Note: Under no circumstances should ventilation louvers be used with a Package Terminal Unit. All grilles must be a product approved for Heating & Cooling Products.


Wiring Diagrams



Wiring Diagrams

Wiring Diagrams

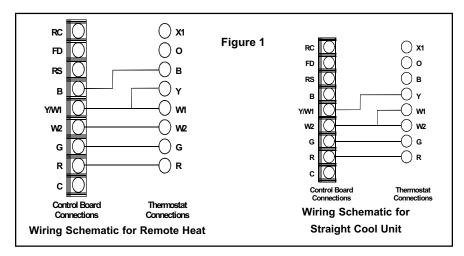


Typical Hydronic Unit Wiring Diagram

Twinning Information

In a situation where the cooling or heating requirements are greater than the capacity of a single packaged terminal air conditioner or heat pump, it may necessary to utilize a twinning application of the Package Air Terminal Units. Shown below are wiring schematics, using Amana Model D9945801 Wall Thermostat for both an Amana PTH and a PTC.

WIRING SCHEMATIC FOR TWINNING TWO AMANA PTC UNITS TO AN AMANA MODEL D9945801 THERMOSTAT



WARNING: DISCONNECT POWER TO ALL UNITS BEFORE MAKING THERMOSTAT CONNECTIONS OR SERVICING ANY UNIT.

Energy Management Systems Information

Amana designed the Package Terminal Unit for complete customer comfort and owner peace of mind. Encompassing both these goals, Amana is firm in the pursuance of compatibility excellence in energy management systems. Listed below are general guidelines for interfacing the "A" Model Package Terminal Unit with energy management systems:

In the remote thermostat mode, the ٠ control of this unit is similar to most wall thermostat controlled units. The low voltage terminal strip to wall thermostat connections for heat pump and straight cool with electric heat operations are listed in figure 1. Control of the unit is accomplished by simply switching between the "R" terminal and the other specified terminals. Any wall thermostat or energy management system that is connected to the unit in the remote thermostat mode must be limited to these switching functions.

In the remote thermostat mode, some wall thermostats or energy management systems may draw power from the twenty four (24) volt circuit provided by the control board. The amount of power that can be consumed by any wall thermostat or energy management system is limited to 1.2 watts (1.2 VA) per the note 2 on page 10 of the installation instructions. However, total power draw is only one factor in determining compatibility. The wall thermostate listed on page A 26, have been

determining compatibility. The wall thermostats listed on page A-26 have been approved for use with the "A" model PTAC. Any other thermostats that may be applied to the units must be evaluated completely for compatibility. If an energy management system is to be used, a sample unit should be set up at a proposed job site and evaluated by the customer for compatibility.

- Table 1 lists the maximum wire lengths and corresponding wire sizes allowed for the remote thermostat operation.
- In the standard mode, the only energy management interface with the control board is through the front desk control feature. This feature is accomplished by shorting across the "RC" and "FD" terminals on the board through a front desk switch. Closing this switch will disable the unit normal operation and allow only the freeze protection feature to remain operable. This front desk feature can also be used in the remote thermostat mode.
- Table 2 lists the maximum wire lengths and corresponding wire sizes allowed for the front desk switch. The contact resistance of the switch, when closed, must be less than 200 ohms for the front desk feature to work.
- On the front desk "RC" and "FD" circuit, no power can be drawn from this circuit to drive any energy management system. This circuit must be limited to a switch.

Maximum Wire							
Length							
Wire Size Maximum Length							
(AWG) Allowed							
#24	400 ft						
#22	600 ft						
#20	900 ft						
#18	1500 ft						
#16	2000 ft						

Table 1 Maximum Wire Length for Remote Control Connection.

Maximum Wire							
Length							
Wire Size Maximum Length							
(AWG) Allowed							
#24	400 ft						
#22	600 ft						
#20	900 ft						
#18	1500 ft						
#16	2000 ft						

Table 2 Maximum Wire Length for Front Desk Switch. Furnish and install air cooled through the wall packaged terminal air conditioners (heat pumps). Units are certified under the ARI (American Refrigeration Institute) certification program and listed by U. L. (Underwriters Laboratories).

Ratings

volts.

Each unit must meet the following specifications:

ARI rating of	g (and BTUH	
reverse cycle heating w	/ith a COP of	at 47° F O.D.)
Electric resistance hea	BTUH. Total Amp draw	
must be of	_ and	Watts at

The unit must remove a minimum of _____ pints of moisture per hour when operated at rating conditions. The EER must be a minimum of EER.

Unit Chassis

Each unit must be slide out design shipped with room cabinet front installed. Unit chassis must have the ability to be installed with zero clearance from finished floor. An electrical power cord must be included with chassis and installed by the manufacturer to assure proper NEMA 6 or 7 configuration and UL approved length. Unit must be tested for conformance to ASTME water infiltration specification **ASTME 331-86** which ensures no water infiltration when tested at 8 inches rain per hour at 63 mph wind for 15 minutes.

Room Cabinet

The front of the room cabinet must be able to be field secured to chassis to inhibit tampering. Filter must be accessible without removing room front. Cabinet depth must not exceed 7" to minimize unit's impact on room space.

Heat Pumps

Each unit must include a changeover thermostat that senses an outside coil switch-over temperature of 25° Fahrenheit, lock-open refrigerant reversing valve during heat pump operation, temperature-activated defrost drain and automatic emergency heat operation to override the heat pump's change-over thermostat and bring on electric resistance heaters in the event of a sealed system failure. Unit must not operate compressor and electric heaters simultaneously.

Compressor

The compressor must be hermetically sealed, internally isolated, rotary-type, and permanently mounted on rubber isolators. No removal or adjustment of compressor hold down bolts is to be required during installation.

Unit Controls

The unit's controls must be completely wired and accessible from the top. Controls must include high and low fan speeds for both cooling, heating, and fan only operation, and an OFF position. Other unit controls must include a concealed ventilation control to allow the introduction of filtered air into the room, a concealed fan mode switch to allow the owner to preset for either continuous fan or thermostatically cycled fan operation. Additionally, the following controls are to be included as standard on all units:

- Compressor restart delay
- Random restart circuit
- Front desk control
- Automatic freeze protection
- Remote control capability
- Mechanical temperature limiter
- Remote temperature sensing capability

Evaporator/Condenser Fans

Direct drive with a permanent split capacitor two-speed motor. Condensate must be directed onto the condenser coil to aid in evaporation and removal. Condenser fan must be propellor type and evaporator fan must be blower type.

Coils

Unit's coils must have rifled copper tubing expanded into ripplededge louvered aluminum fins.

Air Discharge

Must be a sloped surface so that obstructions cannot be placed on the unit. Discharge conditioned air can be directed into the room at an angle of 15 or 40 degrees from the vertical position. The discharge grille must be of polycarbonate material to resist bending, cracking, rusting and corrosion.

Warranty

The warranty is for **Full One Year** on the entire unit; **Full Second through Fifth Year** on the entire sealed refrigerant system components; **Limited Second through Fifth Year** on all functional parts only.

ACCESSORIES

(New installations typically require a minimum of WS900B wall sleeve and an outdoor grille.)

Wall Sleeves

The wall sleeve must be industry standard dimensions: 13-3/4" depth x 42" width x 16-1/16" height and constructed of insulated galvanized steel with electro-deposition paint finish with ULV resistant high-solids polyester overspray. Sleeve must be shipped with weather resistant rear closure panel installed.

(The optional accessories listed below perform specific functions required in some installations.)

Remote Temperature Sensor

A field installed thermistor will override the unit mounted thermostat to allow more accurate, internal wall-sensing of room ambient temperature. All other modes and functions remain at the PTAC unit.

Condensate Drain Kit

Attaches to the bottom of the wall sleeve for directional controlled internal or external disposal of condensate and defrost water.

Subbase Kit

Necessary for U.L. listing requirements for 265 volt units (Hard Wire Kit may be substituted for Subbase kit). Optional for 230/ 208 volt units. Must be prewired to facilitate field electrical connections and include a NEMA 6 or 7 configuration electrical receptacle. It must have two leveling screws for sleeve support and accurate unit leveling during installion. Locations for field installation of physical disconnect switches, cartridge-style fuse holders and circuit breakers must be provided. Side-skirts must be provided with subbases.

Power Vent & Damper

Must be provided to maximize fresh air intake to up to 70 CFM. Damper must automatically close when unit is not in a conditioning mode to prevent outside air from entering the room without being heated or cooled.

Fuse Holders (included in 265v models)

Must be installed either in the unit or the subbase and must match the electrical requirements of the chassis.

Security Key Locks

Must be installed to prevent tampering of the unit controls. Unit room cabinet must also be secured to the chassis with field

Outside Grilles

Must be architectural extruded, anodized aluminum (AGK*** B) or standard stamped aluminum (SGK**B). All other grilles must be submitted to PTAC manufacturer for feasibility, airflow, characteristics and compliance with U.L. regulations, where necessary.

Duct Kits

A main duct kit, extension duct kit, and duct termination kit must be supplied to duct conditioned air into a second room.

Hydronic Heat Kit

Is required for heating functions instead of electric resistance heaters. Unit must retain complete service access with the kit installed. Proper water or steam valves must be used; however, they are not included in the Hydronic Heat Kit.

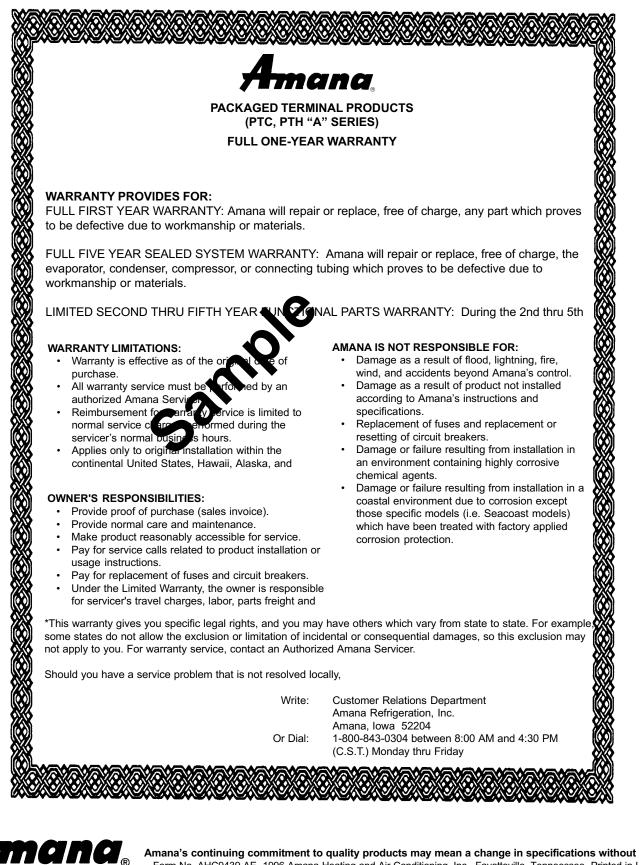
Condensate Removal Pump

Must be installed to assist in removing the condensate developed by the heat pump operation and transfer it to the indoor coil to dissipate into the room adding humidity to the room.

Disconnect Switch

Power disconnect switch must be installed in subbase for use as a physical disconnect where required by local codes.

Circuit Breaker Kit


Must be installed in subbase to provide overcurrent protection for proper 230/208 volt amperage. Can also be used as a physical disconnect where local codes permit for 230/208 voltage.

Hard Wire Kit

Must be used to permanently wire chassis for hard wire purposes. (For 265 volt units, Hard Wire Kit may be substituted with Subbase Kit).

Thermostats

Must be installed to provide full remote operation of the chassis. Thermostat must be manual changeover, auto changeover, or programmable.

Heating - Air Conditioning

Amana's continuing commitment to quality products may mean a change in specifications without notice. Form No. AHC9439 AE 1996 Amana Heating and Air Conditioning, Inc. Fayetteville, Tenneessee Printed in U.S.A. Certified to ISO 9001/ASQC Q9001 - Registered by A.G.A. Quality Certificate #AQC-01501

A - 48

Sound Specifications

Amana Pakage Terminal Units are designed and built to be extra quiet for true people-pleasing comfort. Amana isolates sound and vibration with solid construction and heavy insulation to reduce operating sounds and keep outdoor noise where it belongs . . . outdoors.

Heavy steel chassis provides overal stability that withstands compressor and fan vibration. Heavy steel wall sleeve is corrosion-treated and insulated on the top and sides to reduce noise and heat transmission. Isolated compressor is located behind the bulkhead to confine noise to the outside. Rubber isolates under the compressor and vibration-absorbing refrigerant piping loops further reduce operating sound.

Leave out of 1st revision as per Paul Dopple

Selector		Nominal Sizes (Btuh)							
Switch		PTC Models				PTH Models			
Position	Volts	7,000	9,000	12,000	15,000	7,000	9,000	12,000	15,000
FAN ONLY	230	4.8	5.4	5.8	6.2	5.0	5.0	5.8	6.0
LOW COOL	230	5.6	5.8	6.0	6.6	5.6	5.8	6.0	6.2
HIGH COOL	230	5.8	6.0	6.2	6.8	5.8	6.0	6.2	6.6
LOW HEAT	230	4.8	5.4	5.8	6.2	5.4	5.6	5.8	6.2
HIGH HEAT	230	5.2	5.6	5.8	6.4	5.8	5.8	6.2	6.6

Indoor Sound Table -- Sound Ratings (in decibels)

Outdoor Sound Table -- Sound Ratings (in decibels)

Selector		Nominal Sizes (Btuh)								
Switch			PTC N	lodels		PTH Models				
Position	Volts	7,000	9,000	12,000	15,000	7,000	9,000	12,000	15,000	
FAN ONLY	230		Not Applicable							
LOW COOL	230	6.4	6.4	7.0	7.4	6.8	7.0	7.0	7.4	
HIGH COOL	230	6.4	6.4	7.4	8.0	7.4	7.6	7.4	8.2	
LOW HEAT	230	Not Applicable				6.8	6.8	7.2	7.2	
HIGH HEAT	230					7.4	7.4	7.4	8.0	

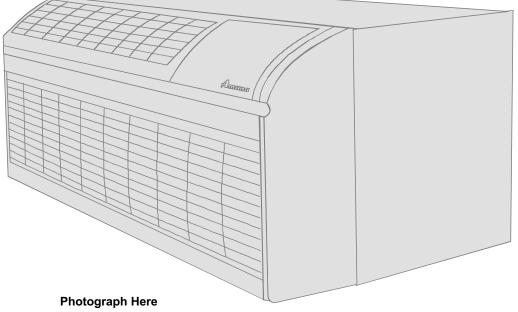
Packaged Terminal Air Conditioners & Heat Pumps

A rugged, yet versatile new Package Terminal Unit that is ideal for zoned heating and cooling applications such as: Hotels & Motels Nursing Homes & Assisted Living Office Complexes Apartments & Condos Single dwellings Residential add-ons Dormitories

Architects and Engineers Manual

AL MARINE

A higher standard of comfort


Photograph Here

Architects and Engineers Design Data Manual

A rugged, yet versatile new Package Terminal Unit that is ideal for zoned heating and cooling applications such as: Hotels & Motels Nursing Homes & Assisted Living Office Complexes Apartments& Condos Single dwellings Residential add-ons Dormitories

A higher standard of comfort

